3D inversion of gravity data by separation of sources and the method of local corrections: Kolárovo case study

> Prutkin I.¹, P. Vajda², V. Bezák², R. Tenzer³, and M. Bielik^{2,4}

Institute of Earth Sciences, Jena University, Jena, Germany,
 2) GFU SAV Bratislava,
 3) University of Otago, Dunedin, New Zealand
 4) KAEG, PriF UK Bratislava

the inversion method : method of local corrections

inversion of potential field data in terms of isolated compact (star-convex) source bodies or density/magnetic contrast contact surfaces (interfaces) or the combination of the two

the method :

- 1) Separation of signal of sources from a pre-selected depth interval : upward-downward-upward harmonic continuation
- 2) Lateral signal of sources separation : 3D line segment approximation
- 3) Method of local corrections geometry of star-convex source homogenous bodies geometry of contrast interfaces (contact surfaces) combination of the two above

Elimination of signal of sources down to depth *d* (making the field harmonic down to depth *d*)

- 1) Upward harmonic continuation to height = d (above surface) Poisson integral (planar approximation) removal of model regional field numerical integration inside data area only
- 2) Downward harmonic continuation over 2*d* (to depth *d*) Poisson integral – integral equation continuation through sources linear ill-posed inverse problem -- regularization
- 3) Upward harmonic continuation over *d* (back to surface) Poisson integral (planar approximation) numerical integration

REMOVAL OF MODEL REGIONAL FIELD

Model regional field -- 3D surface f (x,y)

- harmonic in 2D sense
- on the boundary of the data area same values as data

$$\begin{cases} \frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y} = 0 & \text{within area } S \\ f = \Delta g & \text{on its boundary } \partial S \end{cases}$$

has no extrema (maxima or minima) inside data area
 creates no false signal in terms of causative bodies

UPWARD HARMONIC CONTINUATION - DIRECT

$$\frac{1}{2\pi} \iint \frac{h}{\left((x-x')^2 + (y-y')^2 + h^2\right)^{3/2}} U(x,y,0) \, dxdy = U(x',y',h) \quad \mathbf{h} = \mathbf{d}$$

DOWNWARD HARMONIC CONTINUATION -

 $\frac{1}{2\pi} \iint \frac{h_1 \text{ INVERSE PROBLEM}}{\left((x-x')^2 + (y-y')^2 + h_1^2\right)^{3/2}} U(x,y,-h) \, dxdy = U(x',y',h), \quad \begin{array}{l} h = d \\ h_1 = 2d \\ h_1 = 2d \\ h_1 = 2d \\ h_2 = 2d \\ h_1 = 2d \\ h_2 = 2d \\ h_2 = 2d \\ h_2 = 2d \\ h_1 = 2d \\ h_2 = 2$

KOLÁROVO GRAVITY ANOMALY

INVERSION BY THE METHOD OF LOCALAssumptions:CORRECTIONS

causative anomalous density distribution given by:

star-convex compact homogenous body/bodies
 density contrast contact surface/surfaces (interfaces)
 combination of above

Inversion:

geometry is the solution (non-linear inverse problem)

- In non-linear integral equation for 3D geometry of the boundary discretization
- discretization
- ill-posed problem regularization
- iterations (for 3D geometry of surfaces / body shapes)
- 3D line segments assist in starting the iterations
- assymptotic plane in case of contrast interfaces

KOLÁROVO GRAVITY ANOMALY INVERSION – SOLUTION A

density contrast 300 kg/m³

2 line segments – bottom boundary of sediments (contour lines – depth to basement)
1 line segment – anomalous causative body (ellipsoid) entirely within basement

KOLÁROVO GRAVITY ANOMALY INVERSION – SOLUTION B

Anomalous body

3 line segments – anomalous causative body

intrusion of basic lower crustal material into upper crust density contrast 300 kg/m³

KOLÁROVO GRAVITY ANOMALY INVERSION – SOLUTION C

Contact surface of a density contrast (interface)

density contrast 300 kg/m³

elevation (uplift) of basic lower crustal material

KOLÁROVO GRAVITY ANOMALY INVERSION – SOLUTION D

contact surface and anomalous body

KOLÁROVO GRAVITY ANOMALY INVERSION – SOLUTION E

2 contact surfaces (signal 50% / 50%) – NS cross-section

DISCUSSION

The solution is **unique** – in terms of geometry:

for a source body
 of given density contrast and given weight
 for a contact surface
 of given weight, density contrast and depth of assymptotic plane

The solution is non-unique (arbitrary decisions)

number of bodies and/or contact surfaces
 weigts of bodies / contact surfaces
 density contrasts
 depths of assymptotic planes

CONCLUSIONS

The "Prutkin" inversion method

offers a great tool for potential field data interpretation
 produces several sets of admissible model solutions
 the admissible solutions can be discriminated based on geological, tectonic, and additional geophysical (geoscientific) information

FUTURE WORK ON KOLÁROVO

joint gravity/magnetic inversion
 geological / tectonic / geoscientific constraints