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Model

» A horizontal fluid layer between [—d /2, d /2], rotating with the rate Qq,
having density p, magnetic diffusivity  and permeability u.

» Effects caused by the field By = Bg tanh[y(z — z)]¥ are of interest.
The parameter y enables to modify the field gradient and to localize it.

» The basic-state velocity Ug = 0. In the magnetostrophic approximation,
the linear stability problem is described

1
2,090Xu:*vp+;(VXBg)><b+j><Bg,

%:Vx(ux30)+nvzb,

V-u=0, V-b=0,

> Stress-free, electrically perfectly conducting boundaries are considered.



Model

» Taking the z-component of the induction equation,
the z-components of V Xxinduction equation, V xNavier-Stokes equation,
the z-component of V x V x Navier-Stokes equation,
a system of partial differential equations for u,, w,, b,, j, is obtained.

» Non-dimensionalisation is performed taking: d as the length-scale,

Bo as the magnetic field characteristic strength,
B 2Q0d?up
- p2

0
» The solution is sought as

Ts as the time-scale.

{Uza Wz, bza Jz} = {U7 W, ba J}(Z) exp[i(kXX+ kyy) +St]
{u, w, b, j}(z) exp[ik( + st],

where k, = kcos¢ = Bk, k, = ksing = ak,
and s = \ + iw.



Model

d
» The system of ordinary differential equations is to be solved (D = d>
z

Du = —(ik[DBy(z)]b — aik[By(2)]/,
Dw = aik[By(2)](D? — k?)b — aik[D?By(z)]b,

sb = ika[Bo(z)]u + %(D2 — k?)b,

sj = ika[Bo(z)]w — ikB[DBo(2)]u + %(D2 — k?)j.

The function By(z) = tanh[y(z — zy)] features a zero point in [—-1/2,1/2],
by what the critical level condition k - Bg = 0 is satisfied.

DBy(z) = m7 D?By(z) = —27[Bo(2)][DBo(2)],
™, 0B 2
N=r = 292,0'



Numerical results

» The numerics was performed for a rotating stratified layer.
Density stratification was measured by Rayleigh number R.

> The layer was permeated by the field Bg = tanh[y(z — z)]y, v = 80.
That means a strong field gradient localized to the thin shear region
around the critical point z = z.

» Both, bulk and localized (predominantly magnetically driven) modes of
convection were possible. Preference depended on the critical level position
with respect to a perfectly conducting boundary.

» The critical layer evolved when the critical level was close enough
at the (bottom, z = —0.5) perfectly conducting boundary, zp < —0.388.

» The stationary, critical-layer mode did not depend on the electromagnetic
nature of the distant boundary.
It was identified with the tearing mode.



Numerical results
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Figure: Dependences of critical parameters Rc, ¢, kxc, kyc on Elsasser number A
for modes in the layer permeated by the field By = Bg tanh[vy(z — z)]y, v = 80,
and enclosed by perfectly conducting boundaries.




Numerical results
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Figure: Magnetically driven critical-layer mode at v = 80, zp = —0.45 and mixed boundaries.




Analytical approach, v >>1
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| 4

Du = k*[DBo(2)]b + a[Bo(2)lj,
Dw = —a[By(2)](D? — k?)b + a[D?By(z)]b,

sb = a[By(z)]u + %(D2 — k)b,

[a—y

sj = a?k*[By(2)]w — Bk*[DBy(2)]u + K(DZ — k%)j.



Solution in the outer region, A — oo

» Spatially changeless field, no driving mechanism for motions:
Du=~0and Dw =0, s =0.

>
. Bk?y b )
i. 0 ————— + atanh|y(z — z)]/,
COSh2[’Y(Z B ZO)] ['7( 0)]1
ii. 0= «atanh[y(z — z)] <D2 — K>+ 272) b
cosh?[7(z — 20)] )

iii. 0~ «atanh[y(z — z)]u,

2
iv. 0~ o?k*tanh[y(z — z)|w — %
cosh®[y(z — z)]

» Boundary conditions:

(3)=0 o(3)-0 n)-s



Solution in the outer region

» Since (z # zp), from (ii.) we have

D= (K )

> By the change of the independent variable w = tanh[y(z — z)]
we get the associated Legendre differential equation

o] b

» Taking the presumptions and boundary conditions into account, it is found:

LS

b(z) = kPy " (tanh[y(z — 20)]),

Bk Py (tanh[y(z — 2)])

~ " acosh[y(z — 20)] sinh[(z — 20)]’
u(z) =0, w(z) = 0.




Solution in the inner region (critical layer)

d d
» Rescaling: x = y(z — z) and Fri *ya =D.

» A longwavelength solution relative to the width of the current layer

k
is expected: Kk = — and v > k (> 0).
v

» Performing the substitutions, we obtain
. k? .
i. yDu= ﬁ?VDBo(X)b + aBo(x)J;
. K>
i ADw = —abol) (4207 - 53 ) b+ arD2Be(0b

ii. sb= aBy(x)u+ 1 D2 L b
. 0 X A Y 2 )
k2

. . k2 1 .
iv. §j= o’ —Bo(x)w— ﬁ?fyDBO(X)u + A (72D2 B 72)J



Solution in the inner region

» The equations are to be solved for the marginal stability state, s = 0.

» Boundary conditions: u(xg) =0, b(xs) =0, Dj(xs) =0,

h L L +
where = —— ==z +2).
XB =X 5 Y 5 0
» The following expansions are convenient to obtain a balance in the
equations:
u u
U=ugt —
Y Y
[9%]
W:’YW0+W1+7+"',
by b

beo—‘r*"‘rj‘i"",
0 0

. P
./:’}/./0‘|‘_/1‘~‘;‘|""7
A =~2No.



Solution in the inner region
» For the primary balance it is obtained

i. Dug = aBy(x)jo,

ii. Dwg = —aBy(x)D?bo + aD?By(x)bo,
ii. Dby = —aNgBo(x)uo,

iv. D%y =0,

v. — jo=CG;, GCEeR,
i. — up = Calln(cosh(x)) — In(cosh(xg))],

iii. —
Dby = —Cia*Ag [;In2 (cosh(x)) — In(cosh(x)) In (cosh(XB))] + GCp,
Cb € R.



Solution in the inner region

» Demand on marginal instability to be structurally simplest possible to
determine Cp.

» Setting Dby = O:
2C

0 = In? (cosh()) — 2In (cosh(x)) In (cosh(xg)) — m.

» Minimum magnetic energy for instability
2GC,
Cja2In® (cosh(xg))’

AOmin = -

Dby = —Ca®Aq [;n@ (cosh(x)) — In (cosh(x))) In (cosh(x5))

Jr;In2 (cosh(XB))} .



Solution in the inner region

>
Dby ~ —Ga®No  [ao + a1(x — x0) + 22(x — Xx0)(x — x1)+
a3(x — x0)(x — x1)(x — x2)
+as(x — x0)(x — x1)(x — x2)(x — x3) + Cal
~ —Cia’Ng [Ao + Ca+ Arx + Aox® + Asx® + Asx?] .
h
> Xo=X8~ 5 X1=Xo+h x2=-1, x3=1, xa=xo+4h,
h= fﬁ. The constant C, is chosen to obtain Ps(£xs) = 0.
>

Dwo =~ —xD?%hy
~ Ga®No [Arx + 247 + 3433 + 4A] .



Solution in the inner region
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Figure: The function 0.5In° (cosh[y(z + 0.485)]) —

In (cosh[(z + 0.485)]) In (cosh[y(—0.015)]) + 0.5In’ (cosh[y(—0.015)])

and its approximations by the Newton polynomial of the fourth degree

and by the first terms of Taylor expansions around zy = —0.485 of both parts of the
original function for v = 100, 200, 300.



Solution in the inner region (critical layer)

» In the highest order, the solutions are:

u(z) =~ GCalln(cosh~y(z — z)) — In(cosh[y(—0.5 — z)])]
K2ad
w(z) = CJkCIYZAC [Alfy(z — 20) + 2A[v(z — 2)]?

+3A3[7(z — 20)]* + 4As[v(z — 20)]*] + C,

Cikca . A
bz) m —ZE (Aot Caz = 20) + 5 bz — 20)F

b= P + Pl -l + E e )P+ Gal

. G
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Result
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Figure: Analytically and numerically obtained solutions for the critical-layer mode (tearing

mode) for zp
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Conclusion

» Main features of the analytically obtained solutions
are in a good qualitative accordance with the numerical ones.

The appropriateness of the simplifying physical assumptions
made in each region was confirmed.




