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FEM (Finite-Element Method)
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displacement formulation of equation of motion - D-EqM

pPUi = Oijjij ( Ojj = Adijuk + (Ui, j+Uj.i) )

® node
choose an element with N nodes

e.g. tetrahedron with 4 nodes

choose shape functions and approximation to displacement
in the element

ui(xj,t) = sk(xj)Uik(t) . k=1..,n

unique displacements Uik at nodes

continuity of displacement U; at a contact of elements
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multiply D-EgM by the shape functions

pUl Sk = Gij’jsk ; k=1,...,n

integrate over an element

erpui skdv = er Tij s j s¥dv

integrate the r.h.s. by parts

erpL‘ji s“dv = eraij s,‘}dv + j@QeTi s ds

l l |
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MEeU® = r® + surface-traction _ Tisde

boundary term Q"
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M U = ro + 0
global global vector of global vector of
mass nodal restoring force
matrix displacements
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MEU® = r® + surface-traction _ T. 5K ds
boundary term 0Q° !

assemble all elements covering volume €2 closed by surface 02

l l l 0Q = 0Qps U 0Qpjrichet

M U = ro + 0
global global vector of global vector of
mass nodal restoring force
matrix displacements

the theoretical boundary term vanishes

- at a contact of two elements due to traction continuity
- at the free surface due to zero traction

in fact, however, the final discretization does not give

- the traction continuity at a contact of two elements

- zero traction at the free surface

and thus the zero boundary term in the global equation

they are just low-order approximated




TSN (Traction at Split Nodes) approach
and

Iits implementation in FEM



elastic halfspaces H- and H* do not interact

H- .
traction-free surface
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elastic halfspaces H- and H* do not interact

H- .
traction-free surface

(2
e \+/ traction-free surface

halfspaces coupled by a constraint surface traction

4 {ﬁ-(t)+Af°(ﬁ,t)}/m-
-, fault
A at={F - AT, | /m’
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enforcement of the frictional boundary condition on the fault

if T”Sﬁ(t)‘ < S(t) then TE(t) = To(t)
no slip

. = Ct -~ -

if T (t)‘ > S(t) then T (t) = Tsrfn (t)

To(t) = T2

— | ot
DV (t+dt/2) = AT T - T ]dt
mm



we apply our
adaptive smoothing algorithnm (ASA)
to the trial traction
before it is used for updating the slip rate

in order
to reduce spurious high-frequency oscillations
of the slip rate



ADER-DGM
(Arbitrarily high-order DERIvative
Discontinuous Galerkin Method)
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velocity-stress formulation of equation of motion - VS-EgM
Gij — AVik Oij — (Vi j—Vjii) =0
,OVi — O'ij,j = O

define a vector of unknown variables

T
Q= (O-xx’ayy’o-zz’ny’ayz’azx’vx’vyivz)

VS-EgM in the matrix form

Qp + ApgQqix + BpgQqry + CpgQqz =0

A, B,C space-dependent matrices include material properties

tetrahedral element (e.qg.)

(Qn)p = Qpc(t) @ (X))

I— polynomial basis functions of an optional degree



multiply VS-EgM by a test function and integrate over an element volume
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I— numerical flux introduced
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at an element boundary



multiply VS-EgM by a test function and integrate over an element volume
JQer(Dk dV o IQe( ququX + qu quy + Cpq quZ )(Dk dV = O
integrate the 2nd integral by parts

erQpchdv _ er(ch,xqu + @y, B + cpk,zc:pq)quv
+ _[aQeCDk F,dS =0

I— numerical flux introduced

because Q, may be discontinuous
at an element boundary

Riemann problem — an evolution physically continuous problem

with initial discontinuous approximation of unknowns
across an interface

to find a flux such that

continuity of particle velocity and traction
at an element boundary is assured



Implementation of
the frictional boundary conditions
iIn ADER-DGM
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iImposing frictional boundary condition at S (the 2D example)

e frictional traction

~ G
Oyy = Oyy T OO0y

imposed at S

e consequently T
St G
G(s*) = Q° + (o, 0, 60,y, O, i—50'ij

and thus

=+ _ .6 . C(~ G
Vy =Vy £ (ny O'Xy)

e the slip rate is

~ 2C. [ . G
AV, = —S(O' —-o )
y 1 Xy Xy

- all this means that the imposed frictional traction &,y ,
different from cffy , instantly and locally generates
an imposed slip rate parallel to the fault



the problem of the spurious high-frequency oscillations
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the problem of the spurious high-frequency oscillations

FEM - collinearity
-t
= f =t mm _ —
Ty = L Dayy, 1 fault
— +
A(m +m ) _ l\ o+
NN T
DV = V' — V"
ADER-DG
~ G Y7 + antiparallelism
Oy = Oy + Z—AVy 7
Cs R T/4
fault
analogous +
to the analytical formulation in BIEM
DV = V' — ¥~

uo .
2, AVy - instantaneous (hlgh—freq-uency)
stress response to the slip rate



3D numerical comparison FEM-ASA vs ADER-DGM

receivers

nucleation
zone

v v

6 km

planar fault

direction of
initial shear traction

friction law:
linear slip weakening



3D numerical comparison FEM-ASA vs ADER-DGM

lanar fault
v v P
receivers R1VY R3VY “— .
c direction of
X initial shear traction
; ©
nucleation . . r2 W o

Zone friction law:

5 km linear slip weakening
configuration sub-Rayleigh supershear
initial traction 7, 70.00 MPa 70.0 MPa
static friction T, 81.33 MPa 73.5 MPa
dynamic friction 7, 63.00 MPa 63.0 MPa
critical distance 0.4 m 0.275 m
strength par. S =(r, _To)/(To —17,) 1.62 0.5
square nucleation

: : 3 km 3 km
zone, side length




3D numerical comparison FEM-ASA vs ADER-DGM

ADER-DG
ADER-DG
ADER-DG
FEM-ASA
FEM-ASA
FEM-ASA

order

O4
O4
o4
02
02
02

# of
integ.
points

25
25

25

element
size
400 m
300 m
200 m
100 m
/5 m
50m

element
type
TET
TET
TET
HEX
HEX
HEX



sub-Rayleigh rupture - slip-rate

receiver R1 (antiplane) x-component _ receiver R2 (inplane)  x-component
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receiver R1 (antiplane)

supershear rupture - slip-rate

ta

receiver R3
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X-component . receiver R2 (inplane)  x-component
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effect of the numerical nucleation zone
on the rupture propagation

simulations by FEM-ASA

nucleation zones compared

square with an abrupt change in traction — for example SCEC
ellipse with a smooth change in traction

—_—

7, + overshoot

=
TS
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B norupture @® no rupture
B super-shear square nucleation zone @® super-shear elliptic nucleation zone

[l sub-Rayleigh @ sub-Rayleigh
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B no rupture @® no rupture

B super-shear square nucleation zone @® super-shear elliptic nucleation zone
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thank you for your attention





