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Numerical methods
Approximation of functions
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Approximation and interpolation

To approximate function f (x) means

to substitute it by a function φ(x),
which is in some sense close to function f (x).

We will deal with two basic types of approximation:
interpolation  and least-square method

Definition: Interpolation is such approximation, 

in which the function φ(x) goes exactly through given 

points [xi,yi] , where yi=f (xi) .

Sometimes we also require that 

functions f  and φ have the same derivatives

in points xi .



Approximation and interpolation

Definition: Least-square method is such approximation, 

in which φ(x) is „interlaced“ 

between given points [xi,yi] in such a way, 

that the „distance“ between functions f  and φ  is
in some sense minimal.

Usually the function φ(x) does not go through

points [xi,yi].

To approximate function f (x) means

to substitute it by a function φ(x),
which is in some sense close to function f (x).

We will deal with two basic types of approximation:
interpolation  and least-square method
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Least-square method

means procedure 
for approximate solution of overdetermined equations

or inaccurately defined linear systems
based on minimization of quadrate of residuals

Curve fitting is an important group of problem,
which could be solved by least-square method

We will describe what is it about.



Least-square method

Let t is an independent variable, e.g. time,
and y(t) is an unknown function of variable t

we want to approximate.

Suppose that we performed m measurements,
i.e. values y were measured for specified values of t:

Our aim is to model y(t) 
using linear combination of n basis functions

for some : 

We propose basis function based on
expected course of unknown function y(t).

Then we have to estimate parameters .

Function is called (in statistics)
linear regression function.



Design matrix

Design matrix A of a model is an rectangular matrix, which 
has m rows and n columns:

where is i-th column of A.

Matrix formulation of a model is

where are measured data and

is a vector of unknown parameters.



Least-square method

Residuals are differences between measured and modelled data:

where .

In matrix form

We want to determine the parameters xj in such a way,
that the residual will be minimal.

We can derive least-square method
by solving quadratic minimization problem:



Least-square method

Principle of least squares



Least-square method

Approximate solution of overdetermined system A x = y
(i.e. we have more equations than unknowns),

which minimize the residual r = y – Ax, 
is called

solution of linear system
by least squares.



Least-square method

Sometimes we have to use
weighted linear least squares:

If measurements are 
not equally reliable,
then we can assign

to each measurement
the weight and

then we minimize sum of weighted quadrates 

If, e.g. the error of i-th measurement
is approximately equal to ei, we will choose .

Each method for solving unweighted LSM
is possible to use also for weighted LSM:

it is enough to multiply yi and i-th row of A by .
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Normal equations

Solution of minimization problem

have to fulfill the necessary condition for extrema:

After derivation we obtain

and then

which could be written in matrix form as .



Normal equations

Linear system is known as
normal equations.

If the columns of matrix A are linearly independent,
then the matrix is positive definite

and solution x* of normal equations
is the only solution of minimization problem,

i.e. it holds



Normal equations

If we express the normal equations
using vectors we get

where

and

are scalar products of vectors and . 

Matrix G of this system is called 
Gramian matrix of a set of vectors .



Normal equations

During the design of approximation Rn(t) 
we should select functions in such a way,

that columns of matrix A to be linearly independent.

If it to be the contrary
than it is possible to show that

the minimization problem 
has infinite number of solutions
which is obviously not desirable.



Normal equations

Two important special cases,
for which the columns of matrix A are linearly independent:

1. is a polynomial of degree j-1, e.g.

2. for n=2N+1, where N is a whole nonnegative integer, we chose

and „time of measurement“ ti we chose from interval
where c is an arbitrary number.

Approximation is in the first case an algebraic polynomial and
in the second case a trigonometric polynomial.



Normal equations

If m=n and the matrix A is regular,
then x*=A-1y and r=0,

i.e.                                         .

However if measured data yi contains errors,
then it is not practical,

that function follows those errors.

On the contrary,  we want that           authentically 
reconstructs the unknown function y(t),

therefore it is desirable,
that smooths measured data.

This is possible only if
the number of measurements m is much larger than

the number of design parameters n,
i.e. for .
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Example

For data given by the table

estimate an approximation  .
using least squares.

Obviously                   and .

Normal equations are



Example

For data given by the table

estimate an approximation  .
using least squares.

After computations of sums, 
we get system

which solution is and .

Seeking approximation is

and



Example

For data given by the table

gradually we will approximate the data by polynomials of 
the first, second and third degree.

As basis functions we chose

and



Example

Polynomial of first degree

For and we obtain
normal equations

which has solution
and                    therefore

Approximation by linear polynomial is not good.



Example

Polynomial of second degree

Normal equations

have solution

The residual is smaller but still large than
in the previous example.

,
,



Example

Polynomial of the third degree

Normal equations

have solution

, ,

,



Example

If we enlarge the degree of the polynomial,
we could see that

polynomial of the sixth degree
passes through all points ,

so we will obtain interpolating polynomial.

Notice the elements of Gramian matrices:
the larger degree, the larger maximal coefficient.

This means that the condition number 
of Gramian matrices is growing.

Table shows the condition numbers : 
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Solution of overdetermined systems

Normal equations are not suitable for solving 
large overdetermined systems 
because the condition number

of Gramian matrix is considerably larger than 
condition number of design matrix A, because

The better way is to use 
singular value decomposition

or

QR decomposition.



If the number of equations M is less than the number of unknowns N,
or if M = N but equations are linearly dependent,

then the system has no solution
or

it has more than one solution.

In the later case the space of solutions is given by
a particular solution 

added to the any linear combination of N - M vectors.

The task to find the space of solution for matrix A
is possible to solve using

singular value decomposition of matrix A.

Singular value decomposition - introduction



If the number of equations M is greater than the number of unknowns N,
then in general there is no solution vector and

the system is called overdetermined.

However, we could find a best “compromise” solution, 
which is “the closest” solution 

that satisfy all equations.

If „the closest“ we define in a sense of least square,
i.e. the sum of square of residuals is the smallest possible,

then the overdetermined system is reduced to
solvable problem

called the least square method.

Singular value decomposition - introduction



Reduced system of equations could be written as
system N x N equation

This equations we call normal equations
of a least square problem.

Singular value decomposition has many common features
with the least square method,

which we show later.

Direct solution of normal equations is in general
not the best way to find a solution of least square problem.

Singular value decomposition - introduction

( ) ( ) .T T⋅ ⋅ = ⋅A A x A b



Singular value decomposition

SVD is based on the following theorem of linear algebra:

Each matrix A of type M x N, 

which the number of rows M is greater or equal to the number of columns N,
could be decomposed to a product of 

matrix with orthogonal columns U of type M x N,

diagonal matrix W of type N x N
with positive or zero entries (singular values)

and transpose orthogonal matrix V of type N x N.



Singular value decomposition

Orthogonality of matrices U and V could be written as



Singular value decomposition

SVD could be done also if M < N. 

In such a case the singular values wj for j = M+1, …, N
are all zero

as well as corresponding columns of matrix U.

There is a lot of algorithms of SVD,
proven is subroutine svdcmp from Numerical Recipes.



Singular value decomposition for more equations than unknowns

If we have more equations than unknowns
we are seeking solution
in a least square sense.

We are solving system written as:



Singular value decomposition for more equations than unknowns

After SVD of matrix A we have 

the solution in a form

In this case usually it is not necessary set to zero values wj
however the unusually small values indicate

that the data are not sensitive to some parameters. 



QR decomposition

Another useful method for solving least squares
is using QR decomposition 

of m×n matrix A of normal equations, with m ≥ n.

QR decomposition is the product of an m×m unitary matrix Q
and an m×n upper triangular matrix R

which can be computed using e.g. the Gram–Schmidt process.

As the bottom (m−n) rows of matrix R
consist entirely of zeroes, it is often useful to partition R, 

or both R and Q:

where R1 is an n×n upper triangular matrix, 
0 is an (m − n)×n zero matrix, Q1 is m×n, Q2 is m×(m − n), 

and Q1 and Q2 both have orthogonal columns.
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