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Numerical methods
Approximation of functions
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Approximation and interpolation

To approximate function f (x) means

to substitute it by a function φ(x),
which is in some sense close to function f (x).

We will deal with two basic types of approximation:
interpolation  and least-square method

Definition: Interpolation is such approximation, 

in which the function φ(x) goes exactly through given 

points [xi,yi] , where yi=f (xi) .

Sometimes we also require that 

functions f  and φ have the same derivatives

in points xi .



Approximation and interpolation

Definition: Least-square method is such approximation, 

in which φ(x) is „interlaced“ 

between given points [xi,yi] in such a way, 

that the „distance“ between functions f  and φ  is
in some sense minimal.

Usually the function φ(x) does not go through

points [xi,yi].

To approximate function f (x) means

to substitute it by a function φ(x),
which is in some sense close to function f (x).

We will deal with two basic types of approximation:
interpolation  and least-square method



Approximation and interpolation

For example, we use approximation φ(x)
to approximate calculation of values of function f (x) 

during the plotting of graph φ(x) ≈ f (x).

In general, φ(x) is used to solve problems,
in which it is practical and sometimes inevitable

to substitute function f 
by its approximation φ.

Such an example is computation 
of derivative or definite integral.

It is desirable that calculation of φ(x) is “simple”.

Therefore φ(x) is often seek in the polynomial form.



Interpolation

We chose interpolation function φ(x)
from a suitable class of functions. 

We restrict ourselves to two 
the most common cases:

1. φ(x) is a polynomial function;

2. φ(x) is a piece-wise polynomial,
i.e. in general different on each subinterval
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Polynomial interpolation

Let suppose there are  n+1 given points

which we call interpolation nodes,
and in each node there is given value yi .

We are looking for interpolation polynomial Pn(x)  
of degree of most n,

which satisfies interpolation conditions
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Polynomial interpolation



Polynomial interpolation

Unisolvence theorem

Lets there is given a set of points [ xi, yi ] , i = 0, ... n , 

where no two xi are the same.

Then there exists a unique polynomial Pn degree at most n such, 

that Pn(xi) = yi,  i = 0, ... n. 

We prove the existence of interpolation polynomial
in such a way,

that we show its construction 
for any mutually different nodal points.



Polynomial interpolation

The uniqueness of interpolation polynomial 
can be proofed by contradiction.

Suppose that there are two at-most n degree polynomials
Pn(x) and Rn(x) such that

Pn(xi) = yi,  i = 0, ... n and also Rn(xi) = yi,  i = 0, ... n. 

We will show, that the two polynomials are equal.

Denote  Qn(x) = Pn(x)  - Rn(x).
We see, that Qn(x)  is also at-most n degree polynomial

and moreover Qn(xi) = 0,  i = 0, ... ,n. 
We have at-most n degree polynomial, which has n+1 roots.

But this is possible only if Qn(x)  is identically equal to zero, Qn(x) = 0
and tehrefore Pn(x) = Rn(x) .x" ÎÂ
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Lagrange polynomial

Interpolation polynomial in Lagrange form is

where li(x) are Lagrange basis polynomials defined as

It is easy to see that

therefore  interpolating conditions

are satisfied.
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Lagrange polynomial

Example: Find the interpolation polynomial for data given in table

At first we obtain Lagrange basis polynomials



Lagrange polynomial

Then we construct the interpolation polynomial



Lagrange polynomial



Lagrange polynomial

The main advantage of Lagrange polynomial is 
its elegant form.

Therefore it is mainly used in theoretical considerations.

It is not ideal for practical use
because it has two main drawbacks

• If we add another node xn+1, 
we have to recalculate all Lagrange basis polynomials

• The number of operations needed to calculate values Pn(x*)
is relatively high, 

it requires 2n2+2n operations of multiplication and

2n2+3n operations of addition



Lecture 5

OUTLINE

1. Approximation and interpolation
2. Polynomial interpolation

a. Lagrange polynomial
b. Newton polynomial
c. The error of approximation for interpolating 

polynomial
d. Optimal distribution of interpolation nodes
e. Hermite interpolation

3. Spline interpolation
a. Linear spline interpolation
b. Hermite cubic spline
c. Cubic spline
d. Cubic natural spline



Newton polynomial

Drawbacks of Lagrange polynomial are eliminated by
Newton polynomial, which has a form

Addition of another node xn+1 is easy, 
it is enough to add next term to the Pn(x) because



Newton polynomial

The value z=Pn(x*) can be estimated using Horner scheme:

z:=an 

and then for i = n-1, n-2, … , 0 we calculate
z:= z (x*-xi) + ai.

This significantly reduces the number of operations.

The coefficients ai could be computed directly from interpolation conditions

There is, however, better way called
Divided-Difference method.



Newton polynomial

At first define divided differences:

and for 

It is possible to show that



Newton polynomial

So the Newton polynomial is

If we denote then ai=Pii and
the algorithms of divided-difference method will be

For i=0,1,…,n do  Pi0:=yi.

For  k=1,2,…,n do:

for i=k, k+1, …, n do:

end of cycle i ,

end of cycle k .



Newton polynomial

The calculation could be written in table,
which is filled-in by columns. 



Newton polynomial

Computation of coefficients ai = Pii

and
the follow-up computation of z=Pn(x*) by Horner scheme

requires
operations of multiplication and

operations of addition.

It is much less than using Lagrange polynomial Pn(x*)
( 2n2+2n operations of multiplication and

2n2+3n operations of addition)



Newton polynomial

Example: Construct Newton polynomial for the same data 
as in previous example

Progress of computation is stored in table:



Newton polynomial

We calculate the value of polynomial at point x* = 0,5 
using  Horner scheme:

z:=an 

and then for i = n-1, n-2, … , 0 we calculate
z:= z (x*-xi) + ai., etc. 



Newton polynomial

If we add another node x4 = 0 with prescribed value y4 = 2,
then it is enough to add one more line to the table

and then
where
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The error of approximation for interpolating polynomial

Notation
Symbol denotes a set of all continuous functions

on interval         .

Symbol denotes a set of all functions,
which are continuous together with 

its derivatives up to the order k
on interval         .

For k = 0 obviously .

,C a b
,a b

,kC a b

,a b

º0 , ,C a b C a b



The error of approximation for interpolating polynomial

Let suppose that yi are not arbitrary,
but they are values of function f in the nodes, yi = f (xi).

Then we want to evaluate the error

at chosen point x*. 

For x* = xi is En(xi) = 0 .

What is the error out of nodes?

( ) ( ) ( )= -* : * *n nE x f x P x



The error of approximation for interpolating polynomial

Theorem: Let x* is and arbitrary point,
is any interval which contains all interpolation nodes xi and

also the examined point x* and
let .

Then for the error En(x*) holds

where is some point from the interval .

By we want to stress that, 
the position of point depends not only on function f and interpolation Pn,

but also on the chosen point x*.
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The error of approximation for interpolating polynomial

Notes: (For the simplicity we will consider that
)

1. If Mn+1 is such a constant that for each ,
then

where .

This estimation is often pessimistic.

2. If function f(x) has derivatives of all orders bounded
by the same constant,
then for large enough n is the error arbitrary small.

( )*nE x



The error of approximation for interpolating polynomial

Example: For f (x) = sin x we can take Mn+1 = 1, therefore

It is possible to show that for ,

so for each x from any interval .



The error of approximation for interpolating polynomial

3. If interpolation polynomial is used for calculation of values
of interpolated function outside interval ,
we say that we do extrapolation.
In such a case the error could be large,
because the value quickly grows,
when x retreats form x0 to the left or from xn to the right.

4. can achieve large values also inside the interval ,
mainly if nodes xi are deployed equidistantly, 
i.e. if , where h is fixed step.



The error of approximation for interpolating polynomial

Graph of function   ie



The error of approximation for interpolating polynomial

Example: Construct the interpolation polynomial for function

using equidistantly positioned nodes on .

This is so called
Runge’s phenomenon

and Runge function,
which demonstrates that 

the larger number of nodes,
the larger interpolation error.

Therefore
it is advisable

not to use
high degree

interpolation polynomials
with equidistant nodes.
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Optimal distribution of interpolation nodes

Definition: Normalized polynomial of degree n has form

( ) 1
1

n n
n nP x x a x a-= + + +

The Runge’s phenomenon can be mitigated 
by appropriate distribution of nodes.

Theorem: Among all normalized polynomial of the degree n
just polynomial 

on the interval
is less deviated from zero.

Polynomials are called Chebyshev polynomials of the first kind.
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Optimal distribution of interpolation nodes

Chebyshev polynomials could seem to be a trigonometric,
but due to trigonometric identities it is possible to write also this form
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Optimal interpolation nodes are Chebyshev nodes,
i.e. the roots of Chebyshev polynomials of the first kind.



Optimal distribution of interpolation nodes

Let suppose that we are looking for optimal distribution
of nodes on interval .

We transform the interval into interval

Roots of Chebyshev polynomial of degree n+1 

then optimal distribution of interpolation nodes is
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Hermite interpolation

Up till now we deal with interpolation,
in which the interpolating polynomial was given by prescribed values

Pn(xi) = yi in nodes xi.

If we prescribe also derivatives if interpolated function,
we say about Hermite interpolation.

Let suppose that
in each node xi we have numbers .

Denote

Then Hermite interpolation polynomial is
polynomial at most of degree    , which holds interpolation conditions

It is possible to proof that there is unique such polynomial.
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Hermite interpolation

If

we say that is Hermite interpolation polynomial of function f (x).

Let is interval containing all nodes.
If , then

for the error of Hermite interpolation in point holds

where is some point from interval .



Hermite interpolation

It is not advisable to use the Hermite polynomial of higher degree,
because the error between nodes could be significant.

The formula for calculation of coefficients of Hermite polynomial
is complicated,

we show the calculation on example.



Hermite interpolation

Example Construct Hermite polynomial for data from table

So we have

Because we have prescribed 5 conditions,
we will seek for Hermite polynomial of degree . 

We will write it in the form of power series around that point,
in which there is the most prescribed conditions,

in our case around the point              .



Hermite interpolation

Coefficients a, b, c  could be easily obtained.

From the condition we get .

Similarly from we get and because
, from condition we get .

Next

Solving the system we get . Therefore
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Interpolation

We chose interpolation function φ(x)
from a suitable class of functions. 

We restrict ourselves to two 
the most common cases:

1. φ(x) is a polynomial function;

2. φ(x) is a piecewise polynomial,
i.e. in general different on each subinterval



Spline interpolation

If we want to interpolate function f (x) 
on the relatively long interval ,

we have to request fulfilment of interpolation conditions
in a very large number of nodes.

If we use interpolation polynomials then
it has to be high degree

and this, as we already know,
usually leads to large errors between nodes.

This is therefore not right way to do.

The better way is to divide the interval into
many small subintervals
an on each subinterval

construct an interpolation polynomial of low degree.

,a b

,a b



Spline interpolation

Suppose that

is division of interval .

In each node xi there is prescribed value yi of interpolant.

Denote the length of i-th interval as hi

and the length of the longest interval as h, i.e.

,a b

1,i ix x-



Spline interpolation

We will denote searched piecewise interpolating polynomial
as S(x)

and we will call it interpolating spline.

The S(x) is polynomial on each interval             and
reference to the i-th interval is denoted by subscript i, i.e.

S(x) is polynomial Si(x) on  interval  .

For the expression of polynomial Si(x) 
is good to use local variable

We will also use the first divided difference

1,i ix x-

1,i ix x-
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Linear spline interpolation

Linear spline  is the easiest spline:
we connect each two neighboring points and by 

a line segment.

Then

is linear interpolating polynomial passing through points
and .

Linear spline S(x) is continuous function,
the derivative S`(x) is however 

in general discontinuous at interior nodes.

[ ]1 1,i ix y- - [ ],i ix y

[ ]1 1,i ix y- - [ ],i ix y



Linear spline interpolation



Linear spline interpolation

If and , then
for the error of approximation it holds

where is arbitrary and C is constant independent on h.

For a sufficiently large number of nodes it is possible 
to make the error arbitrary small.

Example: Drawing a graph on screen
with resolution 1024 x 768 points.



Linear spline interpolation

More accurate interpolant could be constructed in such a way,
that we approximate function f(x) 
on intervals ...

using interpolating polynomials of degree 
at most k, where k >1.

The error of interpolation would be proportional to hk+1,
but derivatives in nodes would remain discontinuous.

The large k has no sense, because,
we would have large errors

between nodes and
we would have the same problem

as in the beginning.
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Hermite cubic spline

Hermite cubic spline
is a function S(x), which

1. it is continuous on interval          together
with its first derivative, i.e.                   ,

2. it holds interpolating conditions

where yi, di are given functional values 
and derivatives, respectively,

3. it is polynomial at most third degree 
on each interval             . .



Hermite cubic spline

Si(x) is therefore cubic Hermite polynomial
uniquely defined by conditions

It is easy to find, that the conditions are fulfilled for

Function S(x) is continuous together with its first derivative,
the second derivative is in general discontinuous. 



Hermite cubic spline

If and ,
then for the error of interpolation it holds

where is arbitrary and C is constant independent on h.

If the derivatives di are not provided,
we have to calculate them using
appropriate additional conditions.



Hermite cubic spline

Shape preserving Hermite cubic spline 
is one possibility.

The derivatives di are chosen in such a way 
that S(x) will have the same convexity as linear spline

passing through points [xi,yi].

In detail, if L(x) is linear spline then we require:

1. if L(x) has a local extrema at interior node,
then the S(x) has also local extrema;

2. if L(x) is monotonous between two neighboring nodes,
then also S(x) is same way monotonous.



Hermite cubic spline

One of good implementation 
could be find in MATLAB as function pchip.

The calculation of tangents di is made as follows:

1. Interior nodes

If tangents δi and δi+1 have opposite signs,
or if some of them equals to zero, i.e. if

we set
Otherwise we estimate di as generalized 

harmonic average of tangents δi and δi+1 as

where



Hermite cubic spline

One of good implementation 
could be find in MATLAB as function pchip.

The calculation of tangents di is made as follows:

2. Endpoints x0 and xn. 

The easiest way is to set up d0 = δ1, dn = δn.
There is better approximation in the pchip algorithm
based on quadratic interpolation
(see https://www.mathworks.com/moler/interp.pdf )
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Cubic spline

In the cubic spline we can determine
the tangents di at interior nodes in such a way,
that we require S(x) to have continuous also 

the second derivative

If we differentiate

we get



Cubic spline

For x = xi we have s = hi, so

For x = xi-1 we have s = 0 and

If we advance the subscript i by 1 in the last formula we get



Cubic spline

Inserting into equation

we get

If we have the boundary conditions like

then we insert into the first equation and
term will go to the right-hand side

and into the last equation we insert and
term will go to the right-hand side.

Solving the system we obtain the rest tangents



Cubic spline

The coefficient matrix is tridiagonal, diagonally dominant,
so we can solve it by modified GEM

for tridiagonal matrices.

If

and if ,
then for the error of interpolation it holds



Cubic spline



The error for interpolating polynomial



Cubic spline

Cubic spline has interesting extremal property.

Denote

the set of all functions, 
which have continuous second derivative on interval         ,

pass through given points ,
and in endpoints a = x0 and xn = b
have derivatives values d0 and dn.

Then for cubic spline S(x) achieves minimal value 
on the set of all function V, i.e. it hold



Cubic spline

This property has interesting interpretation in mechanics.

It is known that
elastic energy of homogeneous isotropic rod,

which central line is described as

has approximately value

where c is a constant.

It also holds, that rod,
which is constrained on passing through

fixed interpolating points [xi,yi] in such a way,
that it is only under normal stress to the rod,

take place with minimal energy.

Extremal property therefore claims, 
that cubic spline approximates central line of such a rod..



Cubic spline

If we do not know the tangents da and db

in endpoints of interval ,
then we can use other boundary conditions.



Cubic spline

Construction of cubic spline using the second derivatives.

We can easily check that cubic polynomial

satisfies conditions

Function S(x) defined on each interval by eq. (1)
therefore satisfies conditions

S(x) is continuous on interval         and
it has there continuous also the second derivative.

(1)



Cubic spline

In order to obtain cubic spline,
function S(x) has to have continuous also first derivative 

on interval        .
We require, that at interior points it holds

If we express that condition using

then we obtain

If we chose boundary conditions as

then solving the system we obtain
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Cubic natural spline

Cubic spline with a property

is called cubic natural spline.

It is known that natural spline approximates
bending of simply supported 

(homogeneous isotropic) beam
so the beam passes through points .

Mi have the meaning of bending moments in .



Cubic natural spline



Cubic spline

If we do not know the tangents da and db

in endpoints of interval ,
we can use other boundary conditions.

One of them is called not a knot.
The idea is simple:

we require the spline to be
simple polynomial od the third degree

on the first two intervals, 
i.e. for ,

and on the last two intervals,
i.e. for .

In nodes x1 and xn-1 there is not 
connection of two polynomials, 

that is the points x1 and xn-1 are not „knots“.



Cubic spline

Polynomials S1(x) and S2(x) have
common value y1, common first and second derivative 

in point x1.

Therefore to be both polynomial the same it is enough to require
to have the continuous third derivative

in point x1.

Similar though holds also in point xn-1.

This way we obtain boundary conditions



Cubic spline

Summary

Cubic spline S(x) is function that

1. it is continuous together with its first and second 
derivatives on interval        , 
i.e. ,

2. it hold interpolating conditions
where yi are given functional values,

3. it is polynomial at most degree of three
on each interval               ,

4. it holds boundary conditions

a)

b) ,

c)


