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a11x1 + a12x2 = b1  a22
a21x1 + a22x2 = b2  – a12

(a11a22 – a12a21)x1 = b1a22 – b2a12

(a11a22 – a12a21)x2 = a11b2 – a21b1
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Determinant of the second order



Definition: Let

be a matrix over a field F. 

Then the term a11a22 – a12a21 is called
determinant (of second order) 
of matrix A
and we denote it as 

Determinant of the second order
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a11x1 + a12x2 + a13x3 = b1
a21x1 + a22x2 + a23x3 = b2
a31x1 + a32x2 + a33x3 = b3

Lets multiply the first equation by a22a33 – a23a32,

the second equation by a13a32 – a12a33,

the third equation by a12a23 – a13a22,
and then sum-up the first two with the third one and we get: 

(  a11a22a33 – a11a23a32 + a13a21a32

– a12a21a33 + a12a23a31 – a13a22a31   )  x1 

= 
b1a22a33 – b1a23a32 + b2a13a32

– b2a12a33 + b3a12a23 – b3a13a22

Determinant of the third order



Definition: Let A is a square matrix of the order of 3
with the elements from the field F. 
Then the determinant (of the third order) 
of matrix A is the term

a11a22a33 – a11a23a32 + a13a21a32 

– a12a21a33 + a12a23a31 – a13a22a31 =

Determinant of the third order
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If we denote

Determinant of the third order
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Cramer’s rule
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Determinant of a square matrix

If   is a square matrix of type    , 
then the determinant is the exactly defined number

we denote as   . 

The minor is defined to be the determinant 
of the matrix that results from by removing 

the th row and the th column. 

The determinant itself is recursively defined as follows: 
If   , then the determinant of matrix of type   

is simply   . 
If   , then for each row index    it holds:

This is called  

the Laplace expansion along the  ith row.
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Determinant of a square matrix

If we have a LU decomposition of matrix A,
then

where

= ⋅A L U

The number of arithmetic operations of LU decomposition 
is of order of n3.

This is much less (in case of determinants of higher order)
much less then n! operation

necessary to perform if we use Lapalce expansion
for calculation of determinant.

11 22 33... nnl l l l=L 11 22 33... nnu u u u=U
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Motivation

Many practical problems
require to solve

the large systems of linear equations
A x = b ,

in which the matrix A is sparse,
i.e. it has relatively small number of nonzero elements.

Standard elimination methods 
are not suitable

for solving such large sparse linear systems.

( Why ? )

Because during the elimination process 
we fill-up positions of originally zero elements –

matrix is no more sparse.



Iterative methods

We chose an initial vector x0 and
we generate a sequence of vectors

which converge to the seeking solution x.
0 1 2 ,  x x x

Common feature of all iterative methods is fact,
that each iteration step

requires as many operations as
multiplication of matrix A by a vector,

which is for sparse matrices 
relatively small number of operations.  

1k k+x x
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Convergence

The most of classical iterative methods
are based on decomposition of matrix A = M – N,

where M is regular matrix.

1 ,k k+ = +Mx Nx b
Then we can define a sequence of xk as

where initial approximation x0 is prescribed.

We say, that the iterative method converge,
and we write ,

if numeral sequence
k x x

0.k - x x

We denote the error of k th iteration.
Because , we get

or

k k= -e x x

( ) ( )1k k+ - = -M x x N x x

= +Mx Nx b
1

1 .k k
-

+ =e M Ne



1 ,<T
1-=T M N

Convergence of iterative method
is assured for any initial vector

if

where is iteration matrix.

Convergence

If we denote then we get

2 1
1 1 0 .k
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T is an arbitrary matrix norm



Recall – matrix norms

“Entrywise” norm of matrix

2
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Conditions for stopping iterations

How to decide, 
whether xk+1 is good enough approximation

of solution x ?

Usually we test one of the conditions:

1. 

2.

1k k k+ - £x x x

( )1 1k k+ +£ ⋅ +r A x b
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Jacobi iterative method

Suppose that A = L + D + U, 
where D is diagonal matrix, 

which has the same diagonal as A,
and where L and U are strictly lower and upper

triangular parts of matrix A, i.e.



Jacobi iterative method

Jacobi method is 
based on decomposition

A = M – N,
where M = D and  N = -(L+U) 

and we write it as

( )1k k+ = - +Dx b L U x

This system is easy to solve.
If we write it in component form then
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Analysis of properties
of iteration matrix leads to the statement, that

Jacobi method converge, 
if A is diagonally dominant.

( )1-=- +T D L U



Recall

Definition: We say that square matrix A
is diagonally dominant if
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Gauss-Seidel method

Recall the Jacobi method
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If we use          instead of       

we get

Gauss-Seidel method
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Gauss-Seidel method

In a matrix form

( ) 1k k++ = -D L x b Ux

( )1k k+ = - +Dx b L U x

For comparison, the Jacobi method in matrix form reads

Analysis of properties
of iteration matrix                               leads to the statement, that

Gauss-Seidel method converge, 
if A is diagonally dominant

or
positive-definite.

( ) 1-=- +T D L U

Definition: Symmetric matrix A is positive-definite if

for any non-zero vector x it holds

0Tx x⋅ ⋅ >A



Gauss-Seidel method

Checking, whether the matrix is positive-definite
is usually problematic.

If we multiply any regular matrix A from left by
their transpose matrix,

the final matrix

is symmetric and positive-definite.

Therefore, for system

it is assured that Gauss-Seidel method converge.

In such a case the convergence could be very slow.

TA A

T T=A Ax A b



Jacobi method  vs Gauss-Seidel method

• Convergence of Gauss-Seidel method
is usually faster then
convergence of Jacobi method

• There are matrices, 
for which the Gauss-Seidel method converge
but Jacobi not
and vice versa

• Jacobi method allows parallel processing,
while the Gauss-Seidel method
is sequential from their core



Summary

• Gauss elimination method and Cramer’s rule
lead to the solution.
(Without round off errors we could find
the exact solution.)

• The base of GEM is the modification of matrix
to triangular form. (using elementary row operations)

• The influence of round-off errors on GEM could be 
considerable, therefore we use partial pivoting.

• The GEM is demanding from time and memory aspects. 
It is best suited for not very large systems with dense 
matrix.

• The Cramer’s rule is suitable only for very small 
systems.



Summary

• Using the iterative method we usually find only 
approximate solution.

• At the beginning we chose the initial approximation of 
solution and we refine the solution by repeatedly 
inserting it into iteration formula.
The computation is usually finished when the norm of 
difference of two consecutive iterations is small enough.

• Iterative methods could also diverge.
This depend on the properties of the matrix.

• Iterative methods are suitable for solving large systems 
with sparse matrix.
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Stationary iterative methods

Jacobi and Gauss-Seidel methods are so called
stationary iterative methods.

Stationary iterative methods 
solve a linear system with an operator 

approximating the original one; 
and based on a measurement of the error in the result, 

form a "correction equation" 
for which this process is repeated. 

While these methods 
are simple to derive, implement, and analyze, 

convergence is only guaranteed 
for a limited class of matrices. 

Linear stationary iterative methods are also called 
relaxation methods.



Krylov subspace methods

Krylov subspace methods 
work by forming a basis of the sequence 

of successive matrix powers 
times the initial residual (the Krylov sequence). 

The approximations to the solution are then formed 
by minimizing the residual over the subspace formed. 

The prototypical method in this class is 
the conjugate gradient method (CG).
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Conjugate gradient method (CG)

The conjugate gradient method 
is implemented as an iterative algorithm, 

applicable to large sparse systems
with

symmetric, positive-definite matrix.

We say that two non-zero vectors 
u and v are conjugate 
(with respect to A) if

0Tu Av



Conjugate gradient method (CG)

The iterative algorithms is described by this formulas:
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Conjugate gradient method (CG)

From the fundamentals of algorithm it follows
that after n iterations

we obtain exact solution of the system
and therefore it is not an iterative method

in a strict sense.

This would be true only if there are
no round-off errors.

Therefore we have to look at CG method 
as an iterative method

and we have to define stop criteria. 
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Generalizations of CG method

In case of nonsymmetrical and
not necessary positive-definite matrices

we use
biconjugate gradient method 

(e.g. subroutine linbcg from Numerical Recipes).

The ordinary conjugate gradient method
is their special case.



Generalizations of CG method

The other variant suitable for symmetric 
but not positive-definite matrices A

we obtain using exchange of all matrix multiplications
a . b for   a . A . b  .

This method is called algorithm of minimal residual,
because we minimize the form

Generalization for nonsymmetrical matrices leads to 
the generalized minimal residual method (GMRES).

( ) 21 1 - .
2 2

TQ = ⋅ = ⋅x r r A x b
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Convergence of CG method

Let x(k) be an approximate solution in the k-th step of CG
and let x* be the exact solution.

For symmetric, positive-definite matrix we define
condition number of matrix κ(A)

and A-norm of an arbitrary vector z :

( )
( )
( )

( )1/ 2max

min
: , : , .





= =A

A
A z Az z

A

Then

If κ(A) >> 1 the convergence is very slow.
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Preconditioning

The aim of preconditioning is
to speed-up the convergence of iterative method in such a way,

that we solve an alternative system of linear equations
in which the coefficient matrix has

lower condition number κ
then the original coefficient matrix.

Let A.x = b be the original linear system.

Left preconditioning is defined as:
Let matrix M is regular and „close“ to matrix A. 

Then we solve the system

Right preconditioning is defined as:
Let matrix M is regular. Then we solve system

-1 -1=M Ax M b

-1 1, .-= =AM u b x M u



Preconditioning in CG method

Original algorithms CG:
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Algorithm of preconditioned CG:



Jacobi preconditioner

One of the simplest forms of preconditioning, 
is obtained by the choosing the preconditioner 

to be the diagonal of the matrix matice A

Then

This preconditioning we call
Jacobi preconditioner

or
diagonal scaling.

Advantages of Jacobi preconditioner are
the easy implementation and
low memory requirements.

{
if

0 if
ii

ij
A i j

M
i j

=
=

¹

1 .ij
ij

ii
M

A
- =



Other types of preconditioning 

More sophisticated choices of preconditioner
have to be a compromise

between the reduction of condition number of the matrix
and therefore faster convergence 

and
the time necessary to calculate inverse matrix M-1.

More information here

M. Benzi (2002):
Preconditioning Techniques for Large Linear Systems: A Survey

Journal of Computational Physics 182, 418-477
doi: 10.1006/jcph.2002.7176



Example



Example
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Lets have a square matrix A. 

Its eigenvalues will be denoted as λn ,

right and left eigenvectors as x and y ,
and it holds

If and is symmetric,
then   λi, xi ≡ yi and

eigenvectors generate the orthogonal base.

Affine transform P-1AP
does not change the eigenvalues of matrix A.

Terminology and basic relations

( )det 0

i i i
T T
i i i







- =

=

=

A I

Ax x

y A y

ÎÂA
ÎÂ



Terminology and basic relations

Real orthogonal matrix is such a square matrix Q,
for which its transpose is equal to its inverse.

If Q is not a square matrix,
then conditions

are not equivalent.

Condition QT .Q = I says that

matrix Q is matrix with orthogonal columns.

Condition Q .QT = I says that

matrix Q is matrix with orthogonal rows.

T T⋅ = ⋅ =Q Q Q Q I

andT T⋅ = ⋅ =Q Q I Q Q I



If the number of equations M is less than the number of unknowns N,
or if M = N but equations are linearly dependent,

then the system has no solution
or

it has more than one solution.

In the later case the space of solutions is given by
a particular solution 

added to the any linear combination of N - M vectors.

The task to find the space of solution for matrix A
is possible to solve using

singular value decomposition of matrix A.

Singular value decomposition - introduction



If the number of equations M is greater than the number of unknowns N,
then in general there is no solution vector and

the system is called overdetermined.

However, we could find a best “compromise” solution, 
which is “the closest” solution 

that satisfy all equations.

If „the closest“ we define in a sense of least square,
i.e. the sum of square of residuals is the smallest possible,

then the overdetermined system is reduced to
solvable problem

called the least square method.

Singular value decomposition - introduction



Reduced system of equations could be written as
system N x N equation

This equations we call normal equations
of a least square problem.

Singular value decomposition has many common features
with the least square method,

which we show later.

Direct solution of normal equations is in general
not the best way to find a solution of least square problem.

Singular value decomposition - introduction

( ) ( ) .T T⋅ ⋅ = ⋅A A x A b



Singular value decomposition

In many cases,
when GEM or LU decomposition fail,

singular value decomposition (SVD)
precisely diagnose, where is the problem

and in many cases it also offer 
a suitable numerical solution.

SVD is also method
to solve many least square problems.



Singular value decomposition

SVD is based on the following theorem of linear algebra:

Each matrix A of type M x N, 

which the number of rows M is greater or equal to the number of columns N,
could be decomposed to a product of 

matrix with orthogonal columns U of type M x N,

diagonal matrix W of type N x N
with positive or zero entries (singular values)

and transpose orthogonal matrix V of type N x N.



Singular value decomposition

Orthogonality of matrices U and V could be written as



Singular value decomposition

SVD could be done also if M < N. 

In such a case the singular values wj for j = M+1, …, N
are all zero

as well as corresponding columns of matrix U.

There is a lot of algorithms of SVD,
proven is subroutine svdcmp from Numerical Recipes.
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Singular value decomposition of a square matrix

If A is a square matrix of type N x N, 

then U , W and V are all square matrices of type N x N.

Because U and V are orthogonal,
their inverse are equal to transpose.

Then we can write a formula for inverse matrix A

( )1 diag 1/ T
jw- é ù= ⋅ ⋅ê úë ûA V U

SVD offers clear diagnosis of situation,
if some of singular values are zero

or close to zero.



Singular value decomposition of a square matrix

Recall one of definition of
condition number of matrix κ(A):

The matrix is singular if its condition umber is infinity.

The matrix is ill-conditioned
if reciprocal value of its condition number 

is close to the machine epsilon of a computer,
i.e. less than 10-6 for single precision or

10-12 for double precision.

( )
{ }
{ }

1 max
:

min
j

j

w

w
 A A A-= =



Singular value decomposition of a square matrix

The case of system

in which the coefficient matrix A is singular:

At first, lets have a look at the homogeneous case,
i.e. the case of b=0.

In other words
we are looking for null space of A

,⋅ =A x b

( ) { } { }
{ } { }

: :

: :

n n T

n T T n T

null A x Ax 0 x UwV x 0

x U UwV x 0 x wV x 0

 

 

= Î = = Î =

= Î = = Î =



Singular value decomposition of a square matrix

The case of system

in which the coefficient matrix A is singular:

At first, lets have a look at the homogeneous case,
i.e. the case of b=0.

In other words
we are looking for null space of A

SVD gives direct solution – each column of matrix V,

which corresponding singular value wj is zero
is a solution.

,⋅ =A x b



Singular value decomposition of a square matrix

The case of system

in which the coefficient matrix A is singular:

Now lets have a look at range of matrix A

,⋅ =A x b

( ) { } { } { }: : :n T n n

T

range A Ax x UwV x x Uwy y

y V x

  = Î = Î = Î

=



Singular value decomposition of a square matrix

The case of system

in which the coefficient matrix A is singular:

Now lets have a look at range of matrix A

,⋅ =A x b

The range of matrix A is composed by span
of columns of matrix U,

which corresponding singular value wj is nonzero.



Singular value decomposition of a square matrix

The solution of a system with nonzero right-hand-side
using SVD is this:

• we exchange 1/wj by zero if wj=0
• then we calculate (from right to left) 

( ) ( )diag 1/ T
jwé ù= ⋅ ⋅ ⋅ê úë ûx V U b

If a particular solution lies in range of A,

then it has the smallest size      .
2x

If a particular solution does not lies in range of A,

then x minimize the residuum of solution .:r = ⋅ -A x b



Singular value decomposition of a square matrix

Matrix  A is not singular



Singular value decomposition of a square matrix

Matrix A is singular



Singular value decomposition of a square matrix

Up till now we considered only extreme cases
that the coefficient matrix is or is not singular.

There is often the case
that the singular values wj are very small but nonzero,

so the matrix is ill-conditioned.

In such a case direct methods
can offer formally the solution,

but the solution vector has unreasonably large entries,
which during the algebraic manipulations with matrix A

leads to very bad approximation of the right-hand-side vector.

At that time is better small values wj set to zero and
the solution calculate using

(with replace of 1/wj by zero if wj=0)
( ) ( )diag 1/ T

jwé ù= ⋅ ⋅ ⋅ê úë ûx V U b

We have to be cautious and
we have to chose the good threshold level for zeroise of wj
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Singular value decomposition for less equations than unknowns

If we have less equation than unknowns
we expect N - M dimensional space of solutions.

In this case SVD offers
N - M zero or negligible small values of wj.

If some of M equations degenerate,
then we could have additional zero-valued wj .

Then those columns of V,

which corresponds to zero singular value wj
makes a basis vectors of seeking solution space.

Particular solution could by find using

( ) ( )diag 1/ T
jwé ù= ⋅ ⋅ ⋅ê úë ûx V U b
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Singular value decomposition for more equations than unknowns

If we have more equations than unknowns
we are seeking solution
in a least square sense.

We are solving system written as:



Singular value decomposition for more equations than unknowns

After SVD of matrix A we have 

the solution in a form

In this case usually it is not necessary set to zero values wj
however the unusually small values indicate

that the data are not sensitive to some parameters. 
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