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Basic definitions

System of linear equations (linear system)
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We can assign two matrixes to the system (1):
- coefficient matrix - augmented matrix
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Then the linear system (1) reads

Ax = b

System of linear equations (linear system)
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If b =         then the system (1) is called homogeneous

if b  then it is called nonhomogeneous
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System of linear equations (linear system)



Definition We say that the n-tuple (r1, …, rn) is solution of system (1), 
if Ar = b, where

r = .
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Note

System (1) is consistent, 
if it has at least one solution; 
otherwise it is inconsistent.

System of linear equations (linear system)



Direct methods

attempt to solve the problem 
by a finite sequence of operations.
In the absence of rounding errors, 

direct methods would deliver an exact solution.

System of linear equations (linear system)

Iterative methods

delivers only approximate solution.
The number of steps depends

on required precision.



x-2y+4z+ t =-6
2x+3y- z+2t =13 |  (2)-2*(1)
2x+5y+ z+ t = 8 |  (3)-2*(1)
3x+ y+3z+ t = 1 |  (4)-3*(1)

x-2y+4z+ t =-6 
7y-9z =25
9y-7z- t =20 |  (3)-9/7*(2)
7y-9z-2t =19 |  (4)-7/7*(2)

Example: Find the solution of linear system in real numbers.

x-2y+  4z+ t =   -6 
7y -9z = 25
32/7z- t =-85/7

-2t =   -6

x = 1,  y = 1,  z = - 2,  t = 3



Definition: Elementary row operations (ERO)
on a matrix are:  

– row switching ௝ܴ ↔ ௝ܴ

– row multiplication ܴ݇௜ →	ܴ௜

– row addition ܴ௜ ൅ ܴ݇௝ →	ܴ௜

Elementary row operations



Definition: We say that matrix A of type m x n is
row equivalent with the matrix B of type m x n
if it is possible to transform A into B
by a sequence of elementary row operations.

Row equivalence of matrices



Definition: We say that squared matrix U is 
upper triangular (or right triangular)
if all the entries below the main diagonal are zero.

Upper triangular matrix



Theorem:  Each matrix is row equivalent
with some upper triangular matrix.

Row equivalence of matrices



Definition: The rank of matrix A is 
the number of nonzero rows
of triangular matrix equivalent 
to the matrix A, 
we will denote it h(A).

or

The rank of A is the maximal number 
of linearly independent rows of A.

Rank of a matrix

Consequence: Row equivalent matrices have the same rank.



x-2y+4z+ t =-6
2x+3y- z+2t =13 /(2)-2*(1)
2x+5y+ z+ t = 8 /(3)-2*(1)
3x+ y+3z+ t = 1 /(4)-3*(1)

x-2y+4z+ t =  -6 
7y-9z =  25
9y-7z- t =  20 /(3)-9/7*(2)
7y-9z-2t =  19 /(4)-7/7*(2)

Example: Find the solution of linear system in real numbers.
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x = 1,  y = 1,  z = - 2,  t = 3



Gaussian elimination

We showed a principle of
Gaussian elimination (GE):

Using the finite number of elementary row operations
on the coefficient matrix we get
the upper triangular matrix

and
using back substitution we calculate the vector of unknowns.



Gaussian elimination

We showed a principle of
Gaussian elimination (GE):

Using the finite number of elementary row operations
on the coefficient matrix we get
the upper triangular matrix

and
using back substitution we calculate the vector of unknowns.

Forward elimination:

Let
A(0) = A, b(0) = b

elements of matrix A(0) will be aij
(0) = aij

elements of vector b(0) will be bi
(0) = bi 



Gaussian elimination

algorithm of GE          



Gaussian elimination

multiplicator assures
that 

element (i,k) of matrix A(k)

will be zero

algorithm of GE          



Gaussian elimination

leading coefficient
(pivot)

has to be non-zero

algorithm of GE          



Gaussian elimination

Example:
Solve the linear system

on the hypothetical computer, 
which works in decimal system

with five digits mantissa.

The exact solution is



Gaussian elimination



Gaussian elimination



Gaussian elimination – partial pivoting

Partial pivoting
is the modification of GE which assures

that the absolute values of multiplicators
are less than or equal to 1.

The algorithm selects the entry 
with largest absolute value 

from the column of the matrix 
that is currently being considered 

as the pivot element.



Gaussian elimination – partial pivoting



Gaussian elimination – complete (maximal) pivoting



Pivoting

Partial or complete pivoting?
usually partial pivoting is enough

Partial pivoting is generally sufficient to adequately reduce round-off error.

Complete pivoting is usually not necessary 
to ensure numerical stability and,

due to the additional cost 
of searching for the maximal element, 
the improvement in numerical stability

is typically outweighed 
by its reduced efficiency 

for all but the smallest matrices.



Gaussian elimination

The number of arithmetic operations in forward elimination:                  32
3

n»

The number of arithmetic operations in back substitution   :                  2n»

Computational efficiency



x-2y+4z+ t =-6
2x+3y- z+2t =13 /(2)-2*(1)
2x+5y+ z+ t = 8 /(3)-2*(1)
3x+ y+3z+ t = 1 /(4)-3*(1)

x-2y+4z+ t =  -6 
7y-9z =  25
9y-7z- t =  20 /(3)-9/7*(2)
7y-9z-2t =  19 /(4)-7/7*(2)
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x = 1,  y = 1,  z = - 2,  t = 3

LU decomposition (factorization)



x-2y+4z+ t =-6
2x+3y- z+2t =13 /(2)-2*(1)
2x+5y+ z+ t = 8 /(3)-2*(1)
3x+ y+3z+ t = 1 /(4)-3*(1)

x-2y+4z+ t =  -6 
7y-9z =  25
9y-7z- t =  20 /(3)-9/7*(2)
7y-9z-2t =  19 /(4)-7/7*(2)
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LU decomposition (factorization)



x-2y+4z+ t =-6
2x+3y- z+2t =13 /(2)-2*(1)
2x+5y+ z+ t = 8 /(3)-2*(1)
3x+ y+3z+ t = 1 /(4)-3*(1)

x-2y+4z+ t =  -6 
7y-9z =  25
9y-7z- t =  20 /(3)-9/7*(2)
7y-9z-2t =  19 /(4)-7/7*(2)
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LU decomposition (factorization)



x-2y+4z+ t =-6
2x+3y- z+2t =13 /(2)-2*(1)
2x+5y+ z+ t = 8 /(3)-2*(1)
3x+ y+3z+ t = 1 /(4)-3*(1)

x-2y+4z+ t =  -6 
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LU decomposition (factorization)



LU decomposition (factorization)

Multiplicators mij from the forward elimination are placed
into lower triangular matrix L)



LU decomposition (factorization)

1 2 4 1 1 0 0 0 1 2 4 1
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We obtained LU decomposition of matrix A 
(so called Doolittle version – ones on the diagonal of matrix L)

because

Doolittle algorithm 
makes the LU decomposition

using the half number 
of arithmetic operations

31
3

n»



LU decomposition (factorization)

LU decomposition of A
is useful for solving of sequences of tasks

if the new right-hand-side bi could be estimated only after
we solve the previous linear systems

for k < i.

To solve the system means to solve



LU decomposition with partial pivoting

LU decomposition with partial pivoting
is standard routine of each library of codes.

Input parameter is matrix A.

Output are three matrices:
L, U and permutation matrix P

where
LU = PA.

Permutation matrix comes form identity matrix 
after row exchange.

Solution of Ax=b is given by solution of

(show this)



LU decomposition with partial pivoting

Instead of matrix P we work with
the vector of row permutations p.

At the beginning we put

and we just exchange the elements of vector p.



Gaussian elimination

Definition: We say that square matrix A
is diagonally dominant if



Gaussian elimination

Definition: Symmetric matrix A is positive-definite if

for any non-zero vector x it holds

0Tx x⋅ ⋅ >A

If A is regular then

is positive-definite.

TA A⋅



Gaussian elimination

Sylvester’s criterion: Symmetric matrix A
is positive-definite, if and only if the leading 
principal minors are positive, i.e. if



Gaussian elimination

Gaussian elimination 
is numerically stable for 
diagonally dominant 

or 
positive-definite matrices. 



Cholesky decomposition

TA L L= ⋅

Cholesky decomposition theorem: There is only one way, how the 

decompose the positive-definite matrix A into

where L is the lower triangular matrix.



Cholesky decomposition

TA L L= ⋅

Cholesky decomposition theorem: There is only one way, how the 

decompose the positive-definite matrix A into

where L is the lower triangular matrix.

Cholesky algorithm:

The number of arithmetic operations:                31
3

n»



The effect of round-off errors

Example:
On the hypothetical computer working decimal system
with three digits mantissa solve the following system



The effect of round-off errors

GE with partial pivoting
assures the small residua

However, the small residuum does not give
an estimation of the error of solution



Conditionality

In order to evaluate the conditionality of problem
„to find solution x of system Ax = b“

we need to asses
the effect of change of A a b

to the solution x.



Conditionality

Norm of the vector
class of vector norms lp, 

The most often we use p=1, p=2, or p         

Manhattan Euclid Chebyshev



Conditionality

Properties

1. av = | a | v , (absolute homogeneity or absolute scalability)

2. u + v ≤ u ൅ v (triangle inequality or subadditivity)

3. If v = 0  then v is the zero vector (separates points)



Conditionality

Condition number of a matrix

Let

where maximum and minimum is considered for all nonzero x.
Ratio M/m is called condition number of matrix A:



Conditionality

Lets consider linear system
Ax = b

and other system, which could be obtained by changing the r.h.s.:
, or

we can consider                    as an error of b
and

corresponding error of solution x. 



Conditionality

Because                   then
from the definition of M and m

it follows that

so for

where is a residuum.

Condition number of matrix acts as
an amplifier of relative error !

It is possible to show, that also changes in matrix A
leads to the similar effects on results.



Conditionality

Norm of matrix
the number M is also known as the norm of matrix

and also it holds

Equivalently we could write the condition number of matrix as



Conditionality

“Entrywise” norm of matrix
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x+2y+ z- t = 1
2x+3y- z+2t = 3
4x+7y+ z   = 5
5x+7y-4z+7t =10

Example: Find the solution of linear system in real numbers.



x+2y+ z- t = 1
2x+3y- z+2t = 3
4x+7y+ z   = 5
5x+7y-4z+7t =10

Example: Find the solution of linear system in real numbers.
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x+2y+ z- t = 1
-y-3z+4t = 1

0z+0t = 2
0t = 0

system has no solution



x-2y+4z+ t =-6
2x+3y- z+2t =13
3x+ y+3z+3t = 7
x+5y-5z+ t =19

Another example: Find the solution of linear system in rational numbers.



x-2y+4z+ t =-6
2x+3y- z+2t =13
3x+ y+3z+3t = 7
x+5y-5z+ t =19 
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Another example: Find the solution of linear system in rational numbers.



x-2y+4z+ t =-6
7y-9z+0t =25

0z+0t = 0
0t = 0

System has infinite number of solutions
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t = p,   z = q, p,q  Q 
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For example: if q = 1, p = 0, we get particular solution 





  0,1,

7
34,

7
2

Another example: Find the solution of linear system in rational numbers.



Frobenius theorem: System of nonhomogeneous equations
has solution
if and only if, 
the rank of coefficient matrix
is equal to 
the rank of augmented matrix.

Consequence 1: If h(A) = h(A´) = n (n is the number of unknowns), 
then the system has just one solution.

Consequence 2: If h(A) = h(A´) < n (n is the number of unknowns), 
then the system has infinite number of solutions
and
n-h unknowns could be freely chosen.

Consequence 3: If h(A)  h(A´) then the system has no solution.

System of linear equations



System of homogeneous linear equations
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The system has always solution because  h(A)=h(A´)

System of homogeneous linear equations

Theorem: System of homogeneous equations has 
nontrivial solution
if and only if h(A)  n.
(trivial solution is (0,0,...,0) )



x-2y+4z+ t =0
2x+3y- z+2t =0
3x+ y+3z+3t =0
x+5y-5z+ t =0 
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x-2y+4z+ t =0
7y-9z+0t =0

0z+0t =0
0t =0

Example: Find the solution of linear system in rational numbers.



t = p,    z = q, p,q  Q 

q
7
9y 

pq
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10x 















  Qqp,  ,pq,q,

7
9p,q

7
10S

Example: Find the solution of linear system in rational numbers.

x-2y+4z+ t =0
7y-9z+0t =0

0z+0t =0
0t =0



Summary of notions

• homogeneous and nonhomogeneous system of linear 
equations

• coefficient matrix and augmented matrix 

• elementary row operations

• row equivalent matrices

• rank of a matrix

• upper and lower triangular matrix

• Gaussian elimination (pivoting)

• LU decomposition (Doolittle method)

• Cholesky decomposition

• Frobenius theorem

• solution of homogeneous linear systems


