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Introduction

real problem –> mathematical model

mathematical model - solved using computers

Numerical mathematics is a scientific discipline,
which develop and analyze methods

based on manipulations with numbers



Introduction

Numerical problem

clear and unambiguous description 
of functional relation

between the finite number 
of input and output data

Algorithm of the numerical problem

clear and unambiguous specification
of finite sequence of operations.
The operations uniquely assign

n-tuple numbers of results
to the m-tuple numbers 

from certain set of input data 

Pre- a post-processing
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Source and types of errors

Human errors

Errors of mathematical model

difference between solution 
of mathematical (idealized) problem 

and
solution of real problem

Example: Estimation of the surface of the Earth
using equation S= 4 π r 2

Errors of input data
due to inaccuracy of measurements



Source and types of errors

Errors of numerical method

comes from taking a numerical problem 
instead of mathematical problem

The estimation of this error
is necessary part of solution of numerical problem



Source and types of errors

Errors of numerical method

comes from taking a numerical problem 
instead of mathematical problem

The estimation of this error
is necessary part of solution of numerical problem

Example: Computation of the value of sin x  for x=1 using 
the summation of the finite number of terms 

in Taylor expansion

   
3 5 7 9 2 1

sin 1
3! 5! 7! 9! 2 1 !

n
nx x x x x

x x
n


       





Source and types of errors

Errors of numerical method

comes from taking a numerical problem 
instead of mathematical problem

The estimation of this error
is necessary part of solution of numerical problem

Example: Computation of the value of sin x  for x=1 using 
the summation of the finite number of terms 

in Taylor expansion

We know that summation of the first n terms of expansion 
gives the error in estimation at most

   
3 5 7 9 2 1

sin 1
3! 5! 7! 9! 2 1 !

n
nx x x x x

x x
n


       



 1/ 2 1 !n



Source and types of errors

Round-off errors

Round-off errors can cumulate but also cancel

Example: The number π, result of 2/3



Source and types of errors

Round-off errors

Round-off errors can cumulate but also cancel

Example: The number π, result of 2/3

real problem – all kind of errors together


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Definition of errors

Let x is the exact value of some number
and  is its approximation

we call absolute error of approximation

 x x x  

x



Definition of errors

Let x is the exact value of some number
and is its approximation

we call absolute error of approximation

Relative error

 x x x  

x

 x x x

x x

  



Estimation of errors

Each non-negative number , for which

i.e.

we call estimation of absolute error

 x  

x x x     



Definition of errors



Estimation of errors

Each non-negative number , for which

i.e.

we call estimation of absolute error

Each non-negative number , for which

we call estimation of relative error

 x  

x x x     

 x

x









Definition of errors



Estimation of errors

Each non-negative number , for which

i.e.

we call estimation of absolute error

Each non-negative number , for which

we call estimation of relative error

Usually we write

 x  

x x  

x x x     

 x

x





 1x x  





Definition of errors



Now evaluate an error 

of value of function ,

if exact values 

will be changed by approximate values .

 1 2, ,..., nf x x x f

ix

i i ix x x 

Definition of errors



Definition of errors

       2

1 , 1

x x1
x .

2

n n

i i j
i i ji i j

f f
f x f x x x

x x x
  

 

 
   

   

Now evaluate an error 

of value of function ,

if exact values 

will be changed by approximate values .

 1 2, ,..., nf x x x f

ix

i i ix x x 



Definition of errors

       2

1 , 1

x x1
x .

2

n n

i i j
i i ji i j

f f
f x f x x x

x x x
  

 

 
   

   

Assuming that              are smalli jx x 

Now evaluate an error 

of value of function ,

if exact values 

will be changed by approximate values .

 1 2, ,..., nf x x x f

ix

i i ix x x 



Definition of errors

Assuming that              are smalli jx x 

     
1

x
x

n

i
ii

f
f x f x

x





 



Now evaluate an error 

of value of function ,

if exact values 

will be changed by approximate values .

 1 2, ,..., nf x x x f

ix

i i ix x x 



Definition of errors

Assuming that              are small, we can define absolute error asi jx x 

     
1

x
x

n

i
ii

f
f x f x

x





 


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1

x
x : x x

n

i
ii
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f f f x

x
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


 
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Now evaluate an error 

of value of function ,

if exact values 

will be changed by approximate values .

 1 2, ,..., nf x x x f

ix

i i ix x x 



Definition of errors

Assuming that              are small, we can define absolute error asi jx x 

     
1

x
x

n

i
ii

f
f x f x

x





 



         
1 1

x x
x : x x

n n

i i
i ii i

f f
f f f x x

x x
  

 

 
   

   


(1)

Now evaluate an error 

of value of function ,

if exact values 

will be changed by approximate values .

 1 2, ,..., nf x x x f

ix

i i ix x x 



And for relative error

 
   

 
1

x x

x x

n
i i

i ii

f fx x
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
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Definition of errors



And for relative error

Definition of errors

 
   

 
 

 
1 1

x x x
.

x x x

n n
i i i i

i i i ii i

f f fx x x x

f f x x f x x

  

 

 
 

  


In practice the function values and values of derivatives 

are evaluated at   .x

(2)



Error of basic arithmetic operations

Let .  ,f x y x y 



Error of basic arithmetic operations

Let . 

Using eqs. (1) and (2) we obtain

absolute and relative error of addition and subtraction

 ,f x y x y 

 x y x y      x y x x y y

x y x y x x y y

  
 

  



Error of basic arithmetic operations

Let . 

Using eqs. (1) and (2) we obtain

absolute and relative error of addition and subtraction

 ,f x y x y 

 x y x y      x y x x y y

x y x y x x y y

  
 

  

Relative error of addition or subtraction could be significantly larger

then relative errors of each operand in case when

is significantly smaller than     or .x y x y



Let . 

Then absolute and relative error of division

 , /f x y x y

2

1x x
x y

y y y
  
     

 /

/

x y x y

x y x y

   

Let . 

Then absolute and relative error of multiplication

 ,f x y xy

 xy y x x y     xy x y

xy x y

   

Error of basic arithmetic operations
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Rounding

Let is approximation of written in decimal representationx

1 1
1 2 110 10 10 , 0.e e e k

kx d d d d               

x



Rounding

Let is approximation of written in decimal representation

We say that k-th decimal digit is significant if

i.e. if differs from 

at most of 5 units of order of subsequent digit.

x

1 1
1 2 110 10 10 , 0.e e e k

kx d d d d               

kd

10,5 10e kx x    

x

x x

(3)



Rounding

Let is approximation of written in decimal representation

We say that k-th decimal digit is significant if

i.e. if differs from 

at most of 5 units of order of subsequent digit.

If inequality (3) holds for , but not for ,

we say, that has  p significant digits

and is correctly rounded value of the number 

to the p significant digits.

x

1 1
1 2 110 10 10 , 0.e e e k

kx d d d d               

kd

10,5 10e kx x    

x

x x

(3)

k p 1k p 
x

x



We say that k-th decimal place is significant if

i.e. if      differs from 

at most of 5 units of order of subsequent decimal place.

0,5 10 kx x   

x x

(4)

Rounding



We say that k-th decimal place is significant if

i.e. if      differs from 

at most of 5 units of order of subsequent decimal place.

If inequality (4) hold for  but not for ,

we say that has p significant decimal places.

0,5 10 kx x   

x x

(4)

k p 1k p 
x

Rounding



Several examples

# of significant
digits

# of significant 
decimal places

374 380

-27.6473 -27.598

100.002 99.9973

99.9973 100.002

-0.003728 -0.0041

1.841*10-6 2.5*10-6

xx

Rounding



Several examples

# of significant
digits

# of significant 
decimal places

374 380 1 -

-27.6473 -27.598

100.002 99.9973

99.9973 100.002

-0.003728 -0.0041

1.841*10-6 2.5*10-6

xx

Rounding



Several examples

# of significant
digits

# of significant 
decimal places

374 380 1 -

-27.6473 -27.598 3 1

100.002 99.9973

99.9973 100.002

-0.003728 -0.0041

1.841*10-6 2.5*10-6

xx

Rounding



Several examples

# of significant
digits

# of significant 
decimal places

374 380 1 -

-27.6473 -27.598 3 1

100.002 99.9973 4 2

99.9973 100.002

-0.003728 -0.0041

1.841*10-6 2.5*10-6

xx

Rounding



Several examples

# of significant
digits

# of significant 
decimal places

374 380 1 -

-27.6473 -27.598 3 1

100.002 99.9973 4 2

99.9973 100.002 5 2

-0.003728 -0.0041

1.841*10-6 2.5*10-6

xx

Rounding



Several examples

# of significant
digits

# of significant 
decimal places

374 380 1 -

-27.6473 -27.598 3 1

100.002 99.9973 4 2

99.9973 100.002 5 2

-0.003728 -0.0041 1 3

1.841*10-6 2.5*10-6

xx

Rounding



Several examples

# of significant
digits

# of significant 
decimal places

374 380 1 -

-27.6473 -27.598 3 1

100.002 99.9973 4 2

99.9973 100.002 5 2

-0.003728 -0.0041 1 3

1.841*10-6 2.5*10-6 0 5

xx

Rounding



Subtracting of two close numbers leads to 
decrement of significant digits

Propagation of errors



Subtracting of two close numbers leads to 
decrement of significant digits

Example:

1 1 4 5

1 1 4 5

4.998949 10 , 4.999 10 , 5.10 10 , 1.020 10 ,

5.001848 10 , 5.002 10 , 1.52 10 , 3.039 10

x
x x x

x

y
y y y

y







 

 

      

      

 

 

Propagation of errors



Subtracting of two close numbers leads to 
decrement of significant digits

Example:

1 1 4 5

1 1 4 5

4.998949 10 , 4.999 10 , 5.10 10 , 1.020 10 ,

5.001848 10 , 5.002 10 , 1.52 10 , 3.039 10

x
x x x

x

y
y y y

y







 

 

      

      

 

 

then for subtractions we get,z y x z y x    

2 2 3 22.899 10 , 3 10 , 1.01 10 , 3.484 10
z

z z z
z


          

Propagation of errors



Subtracting of two close numbers leads to 
decrement of significant digits

Example:

1 1 4 5

1 1 4 5

4.998949 10 , 4.999 10 , 5.10 10 , 1.020 10 ,

5.001848 10 , 5.002 10 , 1.52 10 , 3.039 10

x
x x x

x

y
y y y

y







 

 

      

      

 

 

then for subtractions we get,z y x z y x    

2 2 3 22.899 10 , 3 10 , 1.01 10 , 3.484 10
z

z z z
z


          

therefore has one significant digit 
while and have four significant digits. 

z
x y

Propagation of errors



Example:

5 5 41.3262 5 10 , 6.5347 5 10 , 13.235 5 10x y z          

Find the approximation of 

absolute and relative errors
and the number of significant digits of result.

/ ,f xy z

Propagation of errors
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Representation of numbers

Real numbers in computers are represented in the

floating point format.

Basic idea is similar to the 

semilogarithmic notation

(i.e. 2.457*105 )

System of normalized floating point numbers 
is characterized by 4 integer numbers:



base

precision

exponent range


p

 2 
 1p

Representation of numbers

 min max,e e  min max0e e 



base

precision

exponent range


p

 2 
 1p

Representation of numbers

Each number        has form of

where

x
32

1 2 1
, pe

p

ddd
x m m d

         

 min max,e e  min max0e e 



base

precision

exponent range


p

 2 
 1p

Representation of numbers

Each number        has form of

where

x
32

1 2 1
, pe

p

ddd
x m m d

         

m is normalized mantissa (or significand),                                                       

are digits of mantissa, 

p is the number of digits of mantissa and

is integer exponent.

 0,1,..., 1 , 1,2,...,id i p  

min max,e e e

 min max,e e  min max0e e 



base

precision

exponent range


p

 2 
 1p

Representation of numbers

Each number        has form of

where

x
32

1 2 1
, pe

p

ddd
x m m d

         

m is normalized mantissa (or significand), 

are digits of mantissa, 

p is the number of digits of mantissa and

is integer exponent.

Normalized mantissa means that for is

 0,1,..., 1 , 1,2,...,id i p  

min max,e e e

 min max,e e  min max0e e 

10 1.x d 



binary numeral system

hexadecimal system

octal system

decimal system

2 
16 
8 
10 

Representation of numbers



binary numeral system

hexadecimal system

octal system

decimal system

2 
16 
8 
10 

Set   of floating point numbers is a finite set,

count of number is

Representation of numbers



binary numeral system

hexadecimal system

octal system

decimal system

2 
16 
8 
10 

Set   of floating point numbers is a finite set,

count of number is

   1
max min2 1 1 1p e e     

two signs,

Representation of numbers



binary numeral system

hexadecimal system

octal system

decimal system

2 
16 
8 
10 

Set   of floating point numbers is a finite set,

count of number is

   1
max min2 1 1 1p e e     

two signs,
options for the first digit of mantissa,1

Representation of numbers



binary numeral system

hexadecimal system

octal system

decimal system

2 
16 
8 
10 

Set   of floating point numbers is a finite set,

count of number is

   1
max min2 1 1 1p e e     

two signs,
options for the first digit of mantissa,

options for other digits of mantissa,
1

 1p

Representation of numbers



binary numeral system

hexadecimal system

octal system

decimal system

2 
16 
8 
10 

Set   of floating point numbers is a finite set,

count of number is

   1
max min2 1 1 1p e e     

two signs,
options for the first digit of mantissa,

options for other digits of mantissa,
possible values of exponent

1
 1p

max min 1e e 

Representation of numbers



binary numeral system

hexadecimal system

octal system

decimal system

2 
16 
8 
10 

Set   of floating point numbers is a finite set,

count of number is

   1
max min2 1 1 1p e e     

two signs,
options for the first digit of mantissa,

options for other digits of mantissa,
possible values of exponent
and one zero

1
 1p

max min 1e e 

Representation of numbers



The smallest positive number in  is UFL (UnderFlow Level)

which has the first digit of mantissa equal to one, others zero

and exponent the smallest one.

min ,eUFL 

The largest positive number in  is  OFL (OverFlow Level)

which has all digits of mantissa equal to and

exponent is the largest one.

 1 ,p UOFL    
1

Representation of numbers
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Representation of numbers

The gaps between adjacent numbers 
scale

with the size of the numbers

Relative resolution is given by machine epsilon

εmachine  = 0.5 β1-p

For all x, there exists a floating point x'
such that |x'−x|≤ εmachine|x|

Example: 

0 1 2 3 4 5 6 7

min max2, 3, 1, 2p e e    



Representation of numbers

• ±∞ is returned when an operation overflows

• x/±∞ = 0 for any number x, 

• x/0 = ±∞ for any nonzero number x

• Operations with infinity are defined as limits, e.g.

• NaN (Not a Number) is returned when the an operation has no well-

defined finite or infinite result

Examples:                                               NaN ⊙ x

4 lim 4
x

x


  

, / , 0 / 0,  



Denormalized Numbers

• With normalized significand there is a “gap” between 0and β emin

Representation of numbers
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Denormalized Numbers

• With normalized significand there is a “gap” between 0and β emin

• Solution: Allow non-normalized significand when the exponent is emin

• This gradual underflow garantees that

x = y ⇐⇒ x − y = 0

βemi n βemi n + 1 βemi n + 2 βemi n + 30

βemi n βemi n + 1 βemi n + 2 βemi n + 30

Representation of numbers
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Introductory lecture

Contents

1. Introduction, syllabus, evaluation

2. Source and types of errors

3. Definition of errors

4. Rounding, propagation of errors

5. Representation of numbers

6. Conditionality of numerical problems and
numerical stability of algorithms
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Conditionality of numerical problems and numerical stability of algorithms

We have to investigate the effects 
of small changes in input data and rounding

on the result.

Mathematical problem can be treated as mapping ,
which each data from     the set of input data

assigns the result from the set of output data.

We say that the mathematical problem

is correct, when

 y f x
x D

y R

 , , ,y f x x D y R  

1. For each input exists only one result ,
2. this result continuously depends on input data,

i.e. if , then                      .

x D y R

x a    f x f a



We say that the correct problem is well-conditioned, if
small change in input data

will cause small change of result.

Conditionality of numerical problems and numerical stability of algorithms



We say that the correct problem is well-conditioned, if
small change in input data

will cause small change of result.

Condition number is defined as

relative error of input

relative error of outputpC 

Conditionality of numerical problems and numerical stability of algorithms



We say that the correct problem is well-conditioned, if
small change in input data

will cause small change of result.

Condition number is defined as

If , the problem is well-conditioned.

For large (>100) the problem is ill-conditioned.

relative error of input

relative error of outputpC 

1pC 

pC

Conditionality of numerical problems and numerical stability of algorithms



We say that the algorithm is well-conditioned, 

if it is less sensitive to errors in input data.

If the effect of round-off errors on result is small then

we say about numerically stable algorithm.

Well-conditioned and numerically stable algorithm

is called stable.

Conditionality of numerical problems and numerical stability of algorithms



Example:

Estimate the condition number of the problem:

evaluate the functional value of (differentiable) function

show on example function

 y f x

  tanf x x

Conditionality of numerical problems and numerical stability of algorithms



Examples:

1. roots of quadratic equation           

2. Evaluation of integral    

2 2 0x bx c  

1
1

0

1,2,...n x
nE x e dx n 

Conditionality of numerical problems and numerical stability of algorithms
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