Introductory lecture

Numerical methods - Exercises

Lectures: Doc. Mgr. Jozef Kristek, PhD. F1-207
Exercises: Mgr. David Gregor F1-204




Rounding

Let X is approximation of X written in decimal representation
X=+|d;-10°+d,-10°  +...4d, -10°" K +...| d, =0.
We say that k-th decimal digit d, is significant if

x—%| < 0,5-10%% (3

i.e. if X differs from X
at most of 5 units of order of subsequent digit.
If inequality (3) holds for K< p, but not for K= p—+1,
we say, that X has p significant digits
and is correctly rounded value of the number X

to the p significant digits.




Rounding

We say that k-th decimal place is significant if
x—%<0,5-10° 4)

i.e. if X differs from X
at most of 5 units of order of subsequent decimal place.
If inequality (4) hold for K< P but not for k= p+1 ,
we say that X has p significant decimal places.




Rounding

X

A~

X

significant
digits
significant
decimal
places

—»

374 27,6473 100,00]20
380 -27,5980 099,9973
o6 +00,0803 000,008
1 3 4
_ 1 2
099,9973 ~0,003728 1,841.10°
100,0020 ~0,004{100 2,500.10-6
000,008y +0,000872 @659.10¢
5 1 0
2 3 5
0,9973 ~10,0037 1,82.10°2
1,0084 -10,004p 2,52.10°2
0,00@1 +00,0008 @®70.102
3 5 0
2 3 1




Exercise 1.0

Determine the number of significant digits of finite
decimal representation of Euler number, if

X=2,718



Exercise 1.0

Determine the number of significant digits of finite decimal representation of Euler

number, if
X=2,718

Solution: Xx=e=2,718218.--=10.0,2718218...
x—%/<107°.0,218.--< 0,5-10"

Number X is said to approximate Euler number to 4 significant digits.



Exercise 1.1:

Suppose that x = 2,78493 and y = 2,78469 are
approximations of numbers ¢ and n obtained by rounding

these numbers to 5 decimal places.
Determine the absolute and relative error of x-y difference.



Definition of errors

Let X is exact value of some number
and Xis its approximation

A(X)=X—X

we call absolute error of approximation

Relative error

A(X): X — X

X X




Definition of errors

Estimation of errors

Each non-negative number € , for which holds
‘A(x)‘ <e
I.e.

X—e<x<X+e

we call estimation of absolute error

Each non-negative number d, for which

AN,

we call estimation of relative error

Usually we write

x=%X+te X=x(1+d)




Error of basic arithmetic operations

Let f (X Yy)=Xx=%Yy.

Using egs. (1) and (2) we obtain
absolute and relative error of addition and subtraction

X
Xty

A(xty) _
Xty |

AX
_|_

A(xty)<AX+Ay .

y |[|AY
XYY

Relative error of addition or subtraction could be significantly larger
then relative errors of each operand in case when

‘X:I: y‘ Is significantly smaller than ‘X‘ or ‘y‘ :




Exercise 1.1:

Suppose that x = 2,78493 and y = 2,78469 are
approximations of numbers & and n obtained by
rounding these numbers to 5 decimal places.
Determine the estimation of absolute and relative
error of x-y difference.

Solution:

Estimations of absolute errors of x and y are
e(x)= g(y)=0,5.10°,

Then | A(x-y)| <= 10-°= g(x-y).

Estimation of relative error of x is

o(x) =[(0,5.10°)/2,78493]=1,8 -10°

o(y) similar to d(x)

Estimation of relative error

[(£(x-y))/(x-y)]=[(10-5)/0,00024]= 4,2 -102.



Exercise 1.2:

Suppose that z=1,23456 is approximation of
numbers ( obtained by rounding this number to 5
decimal places.

Determine the estimation of errors of [z/(X-y)],
where x and y are numbers from Exercisel.l

X =2,78493 and y =2,78469



Error of basic arithmetic operations

Let f (X, y): Xy .
Then the absolute and relative errors of multiplication are
A
A(xy) <|y|Ax—+|x| Ay ) SAX—I—Ay
v [T

et f(xy)=x/y

Then the absolute and relative errors of division are

1

y

X

X
y 2

y

X
y

A

A
Y

<

AX+

Ay

A(x!y) _ X
xly |~ |¥




Exercise 1.2:

Suppose that z=1,23456 is approximation of numbers { obtained by rounding this
number to 5 decimal places.

Determine the estimation of errors of [z/(X-y)], where x and y are numbers from
Exercisel.l

Solution:

From Exercise 1.1 we already know the error of denominator.
We also know, that €(z)=0,5.10-°.

To obtain estimation of error, we just have to do substitution :

1 Z
X—Y (x— y)2
—5
_ 1 1,55, 12345610
0,00024 2 0,00024°

Z
X=Y

A

<

e(z)+ e(x—y)=

~ 2 2.10°

Whereas the input values X, y and z have error of order 10>, the result has error
of order 10-2!
One should avoid subtracting two nearly equal numbers!



Propagation of errors

notation 10.2324 represents: 10.2324 £ 0.00005
(all the digits of the number are significant)

Calculate (determine as precisely as possible):
3.45 + 4.87 - 5.16
3.55 x2.73
8.24 + 5.33
124.53 - 124.52
4.27 x 3.13

9.48 x 0.513 - 6.72



Propagation of errors

Calculate (determine as precisely as possible):
3.45 + 4.87 - 5.16 = 3.16 £ 0.015 (3.145,3.175)
3.55 x 2.73 = 9.6915 £+ 0.0314 (9.6601, 9.7229)

8.24 + 5.33 = 13.57 + 0.01 (13.56, 13.58)
124.53 - 124.52 = 0.01 £ 0.01 (0, 0.02)
4.27 x 3.13 = 13.3651 + 0.037 (13.3281, 13.4021)

9.48 x 0.513 - 6.72 = -1.85676 + 0.012305
(-1.869065, -1.844455)



Exercise 1.3

Suppose that the number of digits kept in computer is p.
Assuming p=3, add 1,24 and 0,0221.



Representation of numbers

Real numbers in computers are represented in the

floating point format.

Basic idea is similar to the
semilogarithmic notation
(i.e. 2.457*10°)

System of normalized floating point numbers T

Is characterized by 4 integer numbers:




Representation of numbers

D base (b > 2)
P precision ( P> 1)
[Qnin’emax] exponent range (emin <0< emax>

Each number X & T has form of q q g
— . € — 2 3 e oo
X=4+m-b~, where m dl—l—b —|—b2—|— —I—bp_l

M is normalized mantissa (or significand),

d € {O,l,..., b —1}, |=1,2,...,p are digits of mantissa,
P is the number of digits of mantissa and

ec <emin’emax> IS Integer exponent.




Exercise 1.3

Suppose that the number of digits kept in computer is p.
Assuming p=3, add 1,24 and 0,0221.



Exercise 1.3

Suppose that the number of digits kept in computer is p. Assuming p=3, add 1,24
and 0,0221.

Solution:

At first comparison of exponents with potential denormalization takes place.

0,124-10"+0,221-10 " =(0,124/|0+ 0,002|21)-10" = 0,126-10"

It should be noted, that due to roundoff errors, the associative and commutative
laws of algebra do not necessarily hold for floating-point numbers.



IEEE Standard

IEEE Standard for Floating-Point Arithmeic
The result of arithmetic operation in computer
Is exactly the same as
if the operation had been
computed exactly and then rounded

The term underflow is a condition in a computer program where the
result of a calculation is a number of smaller absolute value than the
computer can actually store in memory.

The term overflow is a condition in a computer program where the
result of a calculation is a number of greater absolute value than the
computer can actually store in memory.

program test overflow

implicit none

real{4):-:z %, u

% = 3.1E38

write{=_=)} 'x = ", %

y ==+ 1.3E38

write{=_=)} 'y = ', y * +Infinity
end program




IEEE Standard

Consequences of floating-point arithmetics:

1. addition of small nonzero might have no effect

5.18 x 102 + 4.37 x 101 =5.18 x 102 + 0.00437 x 102 =
5.18437 x 102 =(rounding)= 5.18 x 102

machine epsilon: smallest positive machine number € such that 1 +
e=1

program test epsilon
implicit none
realf{4)z:z x = 1.8, y

y = 5.96846412227E—-008
write{=_"(A4,F16.14)") 'x
write{=,"{A4,F16.14)") 'y

. X
oy

write{=,'{A8,F16.14)") 'x

+

y= ", x+y * 1.00000000000000

y = 1192892824450 007
write{=_"(A4,F16.14)") 'x

g
writef{=_" (A4, F16_143°3) 'y "+ U

write{=,"(A8B,F16.14)") "X

+

=", ¥x+y ! 1.000000119228929

end program




IEEE Standard

Consequences of floating-point arithmetics:

2. inverse property of multiplication might not exist

axl/a#1l

3.000 x 0.333 = 0.999

program test inverse
implicit none
real{4)zz % = 3, y = @

rounding eliminate error v = 1.07%

INn representation: write(e," (A4,F16.14)") '

s X
=Ly

=
o

write{=, " (A4, F16.14)")

*

write{=,"(AB,F16.14}") "x

end program

program test rounding

implicit none

real{4)zz =, U

LR

write{=_"{A4,F16.14)") 'x = ', %
y=-2.3

write{=, " {A4,F16.14)") "'y = ", y
y==x+1

similar situation might urite(=,(AN,F16.14)') 'v = *, y
happend in operation write(=,=)

of addition:

o Pt

write{=_"(A4,F16.14)") "x = ", x
y = 8.3

write{=_"{A4, F16.143") 'y = ', y
y=x*1
writef{=_"{A4,F16.14)") "'v = ",
end program

=

* 2.000000000000008
* B.33333334326744

y =", x=y * 1.00000000000000

* 1.700000884768372

* 2.29999995232628

* 4. _B000B0B0BOBOA

* 1.70000084768372

?* B.30008008611920693

* 2.0000000000008




IEEE Standard

Consequences of floating-point arithmetics:
3. associative law might not hold

(@a+b)+c#xa+ (b+0)
a=6.31x10%, b =4.24 x 109 ¢ =2.47 x 101!

(6.31 x 10 + 0.424 x 10') + 2.47 x 10t =
6.73 x 101 + 2.47 x 101 = 6.73 x 101 + 0.0247 x 10! = 6.75 x 10

6.31 x 101 + (4.24 x 10° + 0.247 x 10°) =
6.31 x 101 + 4.49 x 10° = 6.31 x 10! + 0.449 x 10 = 6.76 x 101

4. loss of significant digits




Conditionality of numerical problems and numerical stability of algorithms

Exercises:
1. Roots of quadratic equation X% — 2bx+c=0
(standard approach can produce error,
while substracting two nearly equal numbers.

It's better to use Vieta’s formulas)

program test kvadr

implicit none
real{4)y:-- a=1.8, b = —-488.6885, c = 2.8
realf{i4)z: ¥, y, D

b=b - 4=a=c

(- b + sqrit{d}}/f2fa

{(— b — sqrt{d})}Ff2fa

Y T T (R |

= 400.0600 y = 5.8024572E-83

EL I — -
=
oo

y=1x X

write{=_=} 'z = ", ®, '
t o= Lioo.80oa 1]
end program

=

Ly
4_0000000E-A3




Conditionality of numerical problems and numerical stability of algorithms

2. Computation of integral

( recurrence relation from N =0 to some N >0 it‘s not stable,

more accurate is to start from some bign>0)

1
E,= [X'¢d  n=12.. E,=1-nE,; E,=1-1/e
0
program test rekurencia
implicit none

integer -:- n
realf{i):-:- E

E=1.8-1.8fexp{1.8)
don=1, 12

E =1.8 - n=E

write{=,'(A2,12,A4,F12.8}') "E{',n,"') = ', E
enddo

write{=_,=}

=-@.8
0-N-=:20 131

E=({1.8—- E}Ffn

wreite{=,'{A2,12,a4,F12.8}'Y '"E{',n-1,")Y = ', E
enddo

E
d

end program




Exercise 1.4
Suppose that the number of digits kept in computer

©.0
IS p. Calculate partial sum ZO, 9n,assuming p=3.
n=0



Exercise 1.4
Suppose that the number of digits kept in computer
o0
is p. Calculate partial sum Z 0,9" assuming p=3.
_ n=0
Solution:
Since sum corresponds to geometric series with common ratio g=0,9, we can

calculate value of the summation as s = 1/(1-0.9) = 10. Partial sums will be
computed using two different approaches:

S = ((1+ 0,9)+0, 92) +---+0,9 —forward summation,

N = ((O 9 +0, 9k_1) + - +1) — backward summation.

Results for different k are written down into table.

k | s . |S— Sk |S—7Tk
50 19.98 [9.97 | 0.02 0.03
100 9.98 | 10.0 | 0.02 0
150 9.98 | 10.0 | 0.02 0




Exercise 1.5

Determine the condition number for value of polynomial

p(X) = Xx* + x—1150

In point X = 33. Let's 100
X X=——.
3



Conditionality of numerical problems and numerical stability of algorithms

We say that the correct problem is well-conditioned, if
small change in input data
will cause small change of result.

Condition number is defined as

relative error of output
_| |
~ |relative error of input]

P

If Cp ~ 1, the problem is well-conditioned.

For large Cp (>100) the problem is ill-conditioned.




Exercise 1.5

Determine the condition number for value of polynomial

p(X)= x* +x—1150

- 100
in point X=33. Let's X~ X= ?
Solution: 0
—28-30
| 100 50 —=<| 24
p(33) = -2, p(5-) =~ = T =& =
| 33 | 33

Problem is ill-conditioned.



Functional analysis

Banach fixed-point theorem: Let (X, d) be a
non-empty complete metric space with a contraction
mapping 9 X — X. Then J admits a unique fixed-
point X* in X. Furthermore, X* can be found as follows:

start with an arbitrary element Xy in X and define

&l sequence{xn} by 9(X,_1) = X, then X, — X* |

What it is good for? Suppose we want to solve f (X) =0.

i f 0 109 + X=X
Let's rewrite the T (X) =0 as Lh(X) I—

h(Xp) =0 g(x)

We'll get fixed-point problem for Q(X), while th solution of
9(Xp) = Xp is root of f(X,)=0.




Functional analysis

Metric space
A metric space is an ordered pair (X,d) where X s a set and
d is a metric on X, such that for any X, Y, Z&€ X, the following
holds:
1.d(X,y) >0 2.d(X,y)=0< x=y3. d(X,y) =d(y,X)
4.d(x,2) <d(x,y)+d(y,2)

Convergence: If there is some distance ] such that
no matter how far you go out in the sequence,
you can find all subsequent elements which are closer to
the limit than C

I —
e & =

o ® *

oo %
T 23456 7891011121314 1516 17 18 19 20

Cauchy sequence <- term in functional analysis




NieCo z funkcionalnej analyzy

Contraction mapping: images of two elements are closer then originals

vx,yeM d(F(x),F(y))<ad(xy); a€(01)

Banach fixed-point theorem — states, that exist only one X = lim x,,
N—o0

X1 =F (Xk), k=01... if F(X) is contraction

ad(X,X, 1) > d<F(X), F(Xn—l)) =d(X, X,)
afd(x,x,)+d(x,, X, 1)) >ad(x,x,_4) > d(x, x;)
ad(X;, X,_1) = (1—a)d(x, ;)

2 (% X g) > d (%, %)

a d(Xn_l, Xn_z) > d(Xn, Xn—l) sequence is uniformly

a_ d (%, %) > d (X, X,)

1-a

approaching limit




Finding roots of nonlinear equations

g(x) = X3 —9x? 4 27x— 24

5 C . f(9)=0 <f(x):x3—9x2+26x—24
N S g(x¥)=x N g(x) = f(x)+x
G(Xp) B g(X) — X3 — 9X2 +27/Xx— 24
GOX) 2 pov g(xl) — )(1
! a(%) =X fixed points
— ey 90%) =%

fixed-point problem can be solved(finding roots of previous problem),

constructing contraction mapping

we can construct sequence (cauchy sequence) that converges

to fixed point (= converges to the root of previous problem)




Finding roots of nonlinear equations

g must be contraction mapping: d (g(xl), g(x2)> <ad <X1’ x2>

d(¥1,Yz)<ad(x,%)

d (v,
<Y1 YZ) <a<1
d (%, %)
so the derivative of §(X) must be from interval —1< g'(X) <1

N

g(x) =x*—9x> +27x—24
this guarantees
thatg(X) is a contraction mapping
and therefore convergences to

fixed point




